Динамика по поддеревьям — различия между версиями
ZeRoGerc (обсуждение | вклад) (→Задача о паросочетании максимального веса в дереве) |
ZeRoGerc (обсуждение | вклад) (→Задача о паросочетании максимального веса в дереве) |
||
Строка 8: | Строка 8: | ||
Для решения данной задачи существует несколько алгоритмов. Например, [[алгоритм_Куна_для_поиска_максимального_паросочетания | алгоритм Куна]], который имеет верхнюю оценку порядка <tex>O \left ( n^3 \right )</tex>. Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до <tex>O \left ( n \right )</tex>. | Для решения данной задачи существует несколько алгоритмов. Например, [[алгоритм_Куна_для_поиска_максимального_паросочетания | алгоритм Куна]], который имеет верхнюю оценку порядка <tex>O \left ( n^3 \right )</tex>. Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до <tex>O \left ( n \right )</tex>. | ||
− | Обозначим <tex>a[i]</tex> как паросочетание максимального веса в поддереве с корнем в i-той вершине, при этом i-тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево i-ой вершины; аналогично <tex>b[i]</tex> - как паросочетание максимального веса в поддерева с корнем в i-той вершине, но только при этом i-тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево i-ой вершины; а <tex>c[i]=\max \left ( a[i],b[i] \right )</tex>, таким образом, ответ на задачу будет находиться в <tex>c[root]</tex>, где <tex>root</tex> - корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине i, нам необходимо найти максимальное паросочетание для всех поддеревьев i-ой вершины. | + | Обозначим <tex>a[i]</tex> как паросочетание максимального веса в поддереве с корнем в <tex>i</tex>-той вершине, при этом <tex>i</tex>-тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево <tex>i</tex>-ой вершины; аналогично <tex>b[i]</tex> - как паросочетание максимального веса в поддерева с корнем в <tex>i</tex>-той вершине, но только при этом <tex>i</tex>-тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево <tex>i</tex>-ой вершины; а <tex>c[i]=\max \left ( a[i],b[i] \right )</tex>, таким образом, ответ на задачу будет находиться в <tex>c[root]</tex>, где <tex>root</tex> - корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине <tex>i</tex>, нам необходимо найти максимальное паросочетание для всех поддеревьев <tex>i</tex>-ой вершины. |
− | Обозначим Ch(x) | + | Обозначим <tex>Ch(x)</tex> {{---}} как множество сыновей вершины <tex>x</tex> и будем находить значения <tex>a[x]</tex> и <tex>b[x]</tex> следующим образом: |
− | Если вершина x | + | Если вершина <tex>x</tex> {{---}} лист, то <tex>a[x]=b[x]=0</tex>, |
в противном же случае | в противном же случае |
Версия 15:40, 7 декабря 2014
Содержание
Динамика по поддеревьям
Главной особенностью динамического программирования по поддеревьям является необходимость учитывать ответы в поддеревьях, так как они могут влиять на ответы в других поддеревьях. Рассмотрим для лучшего понимания динамики по поддеревьям задачу о максимальном взвешенном паросочетании в дереве.
Задача о паросочетании максимального веса в дереве
Пусть задано взвешенное дерево, с весами, обозначенными как паросочетание, чтобы суммарный вес всех рёбер, входящих в него, был максимальным.
, где и — вершины дерева, соединённые ребром. Задача: составить такоеДля решения данной задачи существует несколько алгоритмов. Например, алгоритм Куна, который имеет верхнюю оценку порядка . Но так как нам дано дерево, то можно использовать динамическое программирование, время работы алгоритма с которым улучшается до .
Обозначим
как паросочетание максимального веса в поддереве с корнем в -той вершине, при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, входящей в поддерево -ой вершины; аналогично - как паросочетание максимального веса в поддерева с корнем в -той вершине, но только при этом -тая вершина соединена ребром, входящим в паросочетание, с вершиной, не входящей в поддерево -ой вершины; а , таким образом, ответ на задачу будет находиться в , где - корень дерева. Идея динамического программирования здесь состоит в том, что для того, чтобы найти паросочетание максимального веса с корнем в вершине , нам необходимо найти максимальное паросочетание для всех поддеревьев -ой вершины.Обозначим
— как множество сыновей вершины и будем находить значения и следующим образом:Если вершина
— лист, то ,в противном же случае
- ,
С учётом того, что
, эти формулы можно переписать как- .
Теперь оценим количество операций, необходимых нам для нахождения . Так как , то для вычисления необходимо вычислить , . Для вычисления и того, и другого необходимо время порядка , где n — количество вершин в дереве.
Псевдокод
dfs(int x): for child : Ch[x] dfs(child); a[x] = max(a[x], b[child] + w[x][child] - с[child]); b[x] += с[child]; a[x] += b[x] c[x] = max(a[x], b[x]); dfs(root); return c[root];
Амортизированные оценки для ДП на дереве
Теорема: |
Пусть какой-либо алгоритм на дереве работает за время для вершины x, тогда время обработки им всего дерева не превышает : |
Доказательство: |
, поэтому . |