Поисковые структуры данных — различия между версиями
(→Сравнение структур данных) |
|||
Строка 92: | Строка 92: | ||
| colspan="2" align="center" style="background: #ffffdd;" | <tex>O(n)</tex> | | colspan="2" align="center" style="background: #ffffdd;" | <tex>O(n)</tex> | ||
| align="center" | Вариант [[Дерево поиска, наивная реализация|двоисного дерево поиска]] с добавлением инвариата "случайности", что уменьнашает ожидаемую высоту дерева. | | align="center" | Вариант [[Дерево поиска, наивная реализация|двоисного дерево поиска]] с добавлением инвариата "случайности", что уменьнашает ожидаемую высоту дерева. | ||
+ | |- | ||
|[[АВЛ-дерево]] | |[[АВЛ-дерево]] | ||
| colspan="2" align="center" style="background: #ffffdd;" | <tex>O(\log n)</tex> | | colspan="2" align="center" style="background: #ffffdd;" | <tex>O(\log n)</tex> |
Версия 15:26, 25 мая 2015
Поисковая структура данных — любая структура данных реализующая эффективный поиск конкретных элементов множества, например, конкретной записи в базе данных.
Простейший, наиболее общий, но менее эффективный поисковой структурой является простая неупорядоченный последовательная всех элементов. Расположив элементы в такой список, неизбежно возникнет ряд операций, которые потребуют линейного времени, в худшем случае, а также в средней случае. Используемые в реальной жизни поисковые структуры данных позволяют совершать операции более быстро, однако они ограничены запросами некоторого конкретного вида. Кроме того, поскольку стоимость построение таких структур пропорциональна
, их построение окупится, даже если поступает лишь несколько запросов.Содержание
Тип
Статические поисковые структуры данных (англ. Online search structures) предназначены для ответа на запросы на фиксированной базе данных.
Динамические поисковые структуры (англ. Offline search structures) также позволяют вставки, удаления или модификации элементов между последовательными запросами. В динамическом случае, необходимо также учитывать стоимость изменения структуры данных. Любую динамическую структуру данных можно сделать статической, если запретить вставку и удаление. Также если множество ключей известно, то можно его заранее упорядочить так, чтобы избежать худших случаев в поисках в структурах данных.
Время работы
Эту классификацию обычно считают самой важной. Оценивают худшее время алгоритма, среднее и лучшее для каждой операции. Лучшее время — минимальное время работы алгоритма на каком-либо наборе. Худшее время — наибольшее время.
Используемая память
Параметр структуры данных, показывающий, сколько памяти ей требуется. Обычно затраты составляют
.Сравнение структур данных
Сравним эффективность поисковых структур данных для реализации интерфейса упорядоченного множества. Время работы методов и совпадает с временем работы .
— количество хранимых чисел, каждое из которых представляется с помощью битов.
Insert | Delete | Search | Память | Описание | |||||
---|---|---|---|---|---|---|---|---|---|
Среднее | Худшее | Среднее | Худшее | Среднее | Худшее | Среднее | Худшее | ||
Динамические структуры данных | |||||||||
Неотсортированный массив | Наивная реализация, использующая динамический массив. Добавление происходит в конец массива, а для поиска элемента просто проходим по всему массиву. | ||||||||
Отсортированный массив | То же самое, но теперь массив отсортирован. Поиск ускоряется за счёт возможности применить двоичный поиск. Вставка замедляется из-за необходимости поддерживать инвариант отсортированности. | ||||||||
Неотсортированный список | Аналогично массиву, но храним данные в списке. Можно хранить дополнительную информацию о вершинах, что позволит ускорить время работы операции delete. | ||||||||
Отсортированный список | |||||||||
Дерево поиска, наивная реализация | Бинарное дерево поиска обладает следующим свойством: если | — узел бинарного дерева с ключом , то все узлы в левом поддереве должны иметь ключи, меньшие , а в правом поддереве большие .||||||||
Рандомизированное бинарное дерево поиска | Вариант двоисного дерево поиска с добавлением инвариата "случайности", что уменьнашает ожидаемую высоту дерева. | ||||||||
АВЛ-дерево | Сбалансированное двоичное дерево поиска, в котором поддерживается следующее свойство: для каждой его вершины высота её двух поддеревьев различается не более чем на . | ||||||||
2-3 дерево | Структура данных, представляющая собой сбалансированное дерево поиска, такое что из каждого узла может выходить две или три ветви и глубина всех листьев одинакова. Является частным случаем B+ дерева. | ||||||||
B-дерево | Cильноветвящееся сбалансированное дерево поиска, позволяющее проводить поиск, добавление и удаление элементов за | . B-дерево с узлами имеет высоту . Количество детей узлов может быть от нескольких до тысяч (обычно степень ветвления B-дерева определяется характеристиками устройства (дисков), на котором производится работа с деревом). В-деревья также могут использоваться для реализации многих операций над динамическими множествами за время||||||||
Красно-черное дерево | Сбалансированное двоичное дерево поиска, в котором баланс осуществляется на основе "цвета" узла дерева, который принимает только два значения: "красный" (англ. red) и "чёрный" (англ. black). При этом все листья дерева являются фиктивными и не содержат данных, но относятся к дереву и являются чёрными. | ||||||||
Декартово дерево | Бинарное дерево, в узлах которого хранится пары двоичным деревом поиска по и пирамидой по . Предполагая, что все и все являются различными, получаем, что если некоторый элемент дерева содержит , то у всех элементов в левом поддереве , у всех элементов в правом поддереве , а также и в левом, и в правом поддереве имеем: . | , где — это ключ, а — это приоритет. Также оно является||||||||
Splay-дерево | Двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно, за счёт перемещения к корню (англ. Move to root). Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году. | ||||||||
Дерево ван Эмде Боаса | Cтруктура данных, представляющая собой дерево поиска, позволяющее хранить целые неотрицательные числа в интервале и осуществлять над ними все соответствующие дереву поиска операции. Проще говоря, данная структура позволяет хранить -битные числа.
Особенностью этой структуры является то, что все операции выполняются за , что асимптотически лучше, чем в большинстве других деревьев поиска, где — количество элементов в дереве. | ||||||||
Список с пропусками | Вероятностная структура данных, основанная на нескольких отсортированных односвязных списках.
Отсортированный связный список является простейшей структурой с временем поиска . Добавление дополнительных уровней, обеспечивающих быстрый доступ через несколько элементов, помогает улучшить асимптотику до | ||||||||
Fusion tree | Дерево поиска, позволяющее хранить | -битных чисел, используя памяти, и выполнять операции поиска за время . Эта структура данных была впервые предложена в 1990 году М. Фредманом (M. Fredman) и Д. Уиллардом (D. Willard).||||||||
Цифровой бор | Бор, в котором в качестве строк используются двоичные записи чисел, включая ведущие нули. Таким образом он имеет глубину . | ||||||||
Быстрый цифровой бор | Улучшеная версия структуры цифрового бора. | ||||||||
Сверхбыстрый цифровой бор | Улучшеная версия структуры быстрого цифрового бора. | ||||||||
Статические структуры данных | |||||||||
Tango-дерево | - | - | Двоичное дерево поиска, которое изобрели Эрик Д. Демейн, Дион Хармон, Джон Яконо и Михаи Патраску в 2004 году. Не поддерживает операции вставки и удаления, но перестраивается по ходу поисковых запросов, чтобы отвечать на них как можно оптимальней. Это лучшая известная реализация на данный момент. |