КНФ — различия между версиями
(→КНФ: f(x,y) -> f(x,y,z)) |
Haposiwe (обсуждение | вклад) (1) Изменены "..." на "\ldot" 2) Добавлена СКНФ для медианы от 5 аргументов) |
||
Строка 31: | Строка 31: | ||
|proof = | |proof = | ||
Поскольку инверсия функции <tex>\neg{f}(\vec x)</tex> равна единице на тех наборах, на которых <tex>f(\vec x)</tex> равна нулю, то СДНФ для <tex>\neg{f}(\vec x)</tex> можно записать следующим образом: | Поскольку инверсия функции <tex>\neg{f}(\vec x)</tex> равна единице на тех наборах, на которых <tex>f(\vec x)</tex> равна нулю, то СДНФ для <tex>\neg{f}(\vec x)</tex> можно записать следующим образом: | ||
− | <tex>\neg{f}(\vec x) = \bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, | + | <tex>\neg{f}(\vec x) = \bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}}) </tex>, где <tex> \sigma_{i} </tex> обозначает наличие или отсутствие отрицание при <tex> x_{i} </tex> |
Найдём инверсию левой и правой части выражения: | Найдём инверсию левой и правой части выражения: | ||
− | <tex> f(\vec x) = \neg ({\bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, | + | <tex> f(\vec x) = \neg ({\bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}})}) </tex> |
Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: | Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: | ||
− | <tex> f(\vec x) = \bigwedge\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, | + | <tex> f(\vec x) = \bigwedge\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (\neg{x_{1}^{\sigma_{1}}} \vee \neg{x_{2}^{\sigma_{2}}} \vee \ldots \vee \neg{x_{n}^{\sigma_{n}}} ) </tex> |
Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана. | Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана. | ||
Строка 105: | Строка 105: | ||
Исключающее или: <tex> x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)</tex> | Исключающее или: <tex> x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)</tex> | ||
+ | Медиана 5 аргументов: | ||
+ | |||
+ | <tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) </tex> | ||
== Источники информации == | == Источники информации == | ||
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия {{---}} СКНФ] | * [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия {{---}} СКНФ] |
Версия 19:32, 23 декабря 2017
Содержание
КНФ
Определение: |
Простой дизъюнкцией (англ. inclusive disjunction) или дизъюнктом (англ. disjunct) называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза. |
Простая дизъюнкция
- полная, если в неё каждая переменная (или её отрицание) входит ровно один раз;
- монотонная, если она не содержит отрицаний переменных.
Определение: |
Конъюнктивная нормальная форма, КНФ (англ. conjunctive normal form, CNF) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов. |
Пример КНФ:
СКНФ
Определение: |
Совершенная конъюнктивная нормальная форма, СКНФ (англ. perfect conjunctive normal form, PCNF) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно .
- Для каждого отмеченного набора записываем дизъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть , то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Пример построения СКНФ для медианы
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно
.x | y | z | |
0 | 0 | 0 | 0 |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть
, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.x | y | z | ||
0 | 0 | 0 | 0 | |
---|---|---|---|---|
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 |
3. Все полученные дизъюнкции связываем операциями конъюнкции.
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Исключающее или:
Медиана 5 аргументов: