КНФ — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(КНФ: f(x,y) -> f(x,y,z))
(1) Изменены "..." на "\ldot" 2) Добавлена СКНФ для медианы от 5 аргументов)
Строка 31: Строка 31:
 
|proof =  
 
|proof =  
 
Поскольку инверсия функции <tex>\neg{f}(\vec x)</tex> равна единице на тех наборах, на которых <tex>f(\vec x)</tex> равна нулю, то СДНФ для <tex>\neg{f}(\vec x)</tex> можно записать следующим образом:
 
Поскольку инверсия функции <tex>\neg{f}(\vec x)</tex> равна единице на тех наборах, на которых <tex>f(\vec x)</tex> равна нулю, то СДНФ для <tex>\neg{f}(\vec x)</tex> можно записать следующим образом:
<tex>\neg{f}(\vec x) = \bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, ... ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge ... \wedge x_{n}^{\sigma_{n}}) </tex>, где <tex> \sigma_{i} </tex> обозначает наличие или отсутствие отрицание при <tex> x_{i} </tex>
+
<tex>\neg{f}(\vec x) = \bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}}) </tex>, где <tex> \sigma_{i} </tex> обозначает наличие или отсутствие отрицание при <tex> x_{i} </tex>
  
 
Найдём инверсию левой и правой части выражения:
 
Найдём инверсию левой и правой части выражения:
<tex> f(\vec x) = \neg ({\bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, ... ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge ... \wedge x_{n}^{\sigma_{n}})}) </tex>
+
<tex> f(\vec x) = \neg ({\bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}})}) </tex>
  
 
Применяя дважды к полученному в правой части выражению правило де Моргана, получаем:
 
Применяя дважды к полученному в правой части выражению правило де Моргана, получаем:
<tex> f(\vec x) = \bigwedge\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, ... ,x^{\sigma_{n}}) = 0} (\neg{x_{1}^{\sigma_{1}}} \vee \neg{x_{2}^{\sigma_{2}}} \vee ... \vee \neg{x_{n}^{\sigma_{n}}} ) </tex>
+
<tex> f(\vec x) = \bigwedge\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (\neg{x_{1}^{\sigma_{1}}} \vee \neg{x_{2}^{\sigma_{2}}} \vee \ldots \vee \neg{x_{n}^{\sigma_{n}}} ) </tex>
  
 
Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана.
 
Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана.
Строка 105: Строка 105:
 
Исключающее или: <tex> x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)</tex>
 
Исключающее или: <tex> x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)</tex>
  
 +
Медиана 5 аргументов:
 +
 +
<tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) </tex>
 
== Источники информации ==
 
== Источники информации ==
 
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия {{---}} СКНФ]
 
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 Википедия {{---}} СКНФ]

Версия 19:32, 23 декабря 2017

КНФ

Определение:
Простой дизъюнкцией (англ. inclusive disjunction) или дизъюнктом (англ. disjunct) называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Простая дизъюнкция

  • полная, если в неё каждая переменная (или её отрицание) входит ровно один раз;
  • монотонная, если она не содержит отрицаний переменных.


Определение:
Конъюнктивная нормальная форма, КНФ (англ. conjunctive normal form, CNF) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов.

Пример КНФ: [math]f(x,y,z) = (x \lor y) \land (y \lor \neg{z})[/math]

СКНФ

Определение:
Совершенная конъюнктивная нормальная форма, СКНФ (англ. perfect conjunctive normal form, PCNF) — это такая КНФ, которая удовлетворяет условиям:
  • в ней нет одинаковых простых дизъюнкций
  • каждая простая дизъюнкция полная

Пример СКНФ: [math]f(x,y,z) = (x \lor \neg{y} \lor z) \land (x\lor y \lor \neg{z})[/math]


Теорема:
Для любой булевой функции [math]f(\vec{x})[/math], не равной тождественной единице, существует СКНФ, ее задающая.
Доказательство:
[math]\triangleright[/math]

Поскольку инверсия функции [math]\neg{f}(\vec x)[/math] равна единице на тех наборах, на которых [math]f(\vec x)[/math] равна нулю, то СДНФ для [math]\neg{f}(\vec x)[/math] можно записать следующим образом: [math]\neg{f}(\vec x) = \bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}}) [/math], где [math] \sigma_{i} [/math] обозначает наличие или отсутствие отрицание при [math] x_{i} [/math]

Найдём инверсию левой и правой части выражения: [math] f(\vec x) = \neg ({\bigvee\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge \ldots \wedge x_{n}^{\sigma_{n}})}) [/math]

Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: [math] f(\vec x) = \bigwedge\limits_{f(x^{\sigma_{1}}, x^{\sigma_{2}}, \ldots ,x^{\sigma_{n}}) = 0} (\neg{x_{1}^{\sigma_{1}}} \vee \neg{x_{2}^{\sigma_{2}}} \vee \ldots \vee \neg{x_{n}^{\sigma_{n}}} ) [/math]

Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана.
[math]\triangleleft[/math]

Алгоритм построения СКНФ по таблице истинности

  1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно [math]0[/math].
  2. Для каждого отмеченного набора записываем дизъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть [math]0[/math], то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
  3. Все полученные дизъюнкции связываем операциями конъюнкции.

Пример построения СКНФ для медианы

1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно [math]0[/math].

x y z [math] \langle x,y,z \rangle [/math]
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть [math]0[/math], то в дизъюнкцию включаем саму переменную, иначе ее отрицание.

x y z [math] \langle x,y,z \rangle [/math]
0 0 0 0 [math]( x \lor y \lor z)[/math]
0 0 1 0 [math]( x \lor y \lor \neg{z})[/math]
0 1 0 0 [math](x \lor \neg{y} \lor z)[/math]
0 1 1 1
1 0 0 0 [math](\neg{x} \lor y \lor z)[/math]
1 0 1 1
1 1 0 1
1 1 1 1

3. Все полученные дизъюнкции связываем операциями конъюнкции.

[math] \langle x,y,z \rangle = ( x \lor y \lor z) \land (\neg{x} \lor y \lor z) \land (x \lor \neg{y} \lor z) \land ( x \lor y \lor \neg{z})[/math]

Примеры СКНФ для некоторых функций

Стрелка Пирса: [math] x \downarrow y = (\neg{x} \lor {y}) \land ({x} \lor \neg {y}) \land (\neg {x} \lor \neg {y}) [/math]

Исключающее или: [math] x \oplus y \oplus z = (\neg {x} \lor \neg {y} \lor z) \land (\neg {x} \lor y \lor \neg {z}) \land (x \lor \neg {y} \lor \neg {z}) \land (x \lor y \lor z)[/math]

Медиана 5 аргументов:

[math] \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) [/math]

Источники информации