Игра «Жизнь» — различия между версиями
Mariashka (обсуждение | вклад) |
Mariashka (обсуждение | вклад) |
||
Строка 56: | Строка 56: | ||
Мы рассмотрим только общие свойства частей МТ и конструкций, нужных для их построения, так как при построении МТ возникает большое количество технически сложных вспомогательных элементов<ref>[http://eprints.uwe.ac.uk/22323 Rendell, P. (2014) Turing machine universality of the game of life. PhD, University of the West of England]</ref>. | Мы рассмотрим только общие свойства частей МТ и конструкций, нужных для их построения, так как при построении МТ возникает большое количество технически сложных вспомогательных элементов<ref>[http://eprints.uwe.ac.uk/22323 Rendell, P. (2014) Turing machine universality of the game of life. PhD, University of the West of England]</ref>. | ||
=== Конечный автомат === | === Конечный автомат === | ||
− | Конечный автомат представляет собой двумерный массив с двумя входами: предыдущее состояние, получаемое от детектора сигнала, и считанный символ от одного из стеков {{---}} для выбора ряда и колонки. | + | Конечный автомат представляет собой двумерный массив с двумя входами: предыдущее состояние, получаемое от детектора сигнала, и считанный символ от одного из стеков {{---}} для выбора ряда и колонки ячейки, в которой лежит информация о переходе. |
=== Детектор сигнала === | === Детектор сигнала === | ||
− | Детектор сигнала распознает информацию, полученную от конечного автомата, и передает ее дальше: информацию о следующем состоянии {{---}} обратно в автомат(с задержкой), где она используется для выбора адреса ряда; информацию о символе для записи {{---}} на один из стеков. | + | Детектор сигнала распознает информацию, полученную от конечного автомата, и передает ее дальше: информацию о следующем состоянии {{---}} обратно в автомат (с задержкой), где она используется для выбора адреса ряда; информацию о символе для записи {{---}} на один из стеков. |
=== Стек === | === Стек === | ||
− | Лента МТ представлена в виде двух стеков, | + | Лента МТ представлена в виде двух стеков, которые могут эмулировать передвижение головки чтения записи по ленте: в каждом цикле один стек делает push символа, другой {{---}} pop. |
=== Контроллер стека === | === Контроллер стека === | ||
− | Контроллер стека производит конструкцию из планеров, необходимую | + | Контроллер стека производит конструкцию из планеров, необходимую стекам для произведения push или pop, осуществляет перемещение символов. |
==Некоторые конструкции== | ==Некоторые конструкции== | ||
<b>Пчелиная королева</b><br> | <b>Пчелиная королева</b><br> |
Версия 14:06, 14 января 2016
Игра «Жизнь» (англ. Conway's Game of Life) — клеточный автомат, придуманный английским математиком Джоном Конвеем в 1970.
Содержание
Правила
- Правило 1. Действие происходит на бесконечной плоскости, разделенной на клетки, которую можно иногда представить как зацикленную конечную.
- Правило 2. Каждая клетка может находиться в двух состояниях: быть живой или быть мёртвой.
- Правило 3. У каждой клетки соседей.
- Правило 4. Если клетка жива и у нее живых соседа, то она остается живой, иначе умирает.
- Правило 5. Если клетка мертва и у нее живых соседа, то она становится живой, иначе остается мертвой.
- Правило 6. Игра прекращается, если на поле не останется ни одной живой клетки.
- Правило 7. Игра прекращается, если при очередном шаге ни одна из клеток не меняет своего состояния.
- Правило 8. Игра прекращается, если конфигурация на очередном шаге в точности повторит себя же на одном из более ранних шагов.
Булевы функции
Теорема: |
В игре «Жизнь» можно построить любую булеву функцию. |
Доказательство: |
Базовые конструкцииРассмотрим базовые конструкции необходимые для построения.
Булевы функцииТак как штрих Шеффера или NAND) является полной системой, то достаточно построить и , чтобы показать возможность построения любой булевой функции. (Построение NOTРассмотрим поток данных, состоящий из планеров. Наличие планера — Построение ANDСм. рисунок. Пусть |
Неразрешимость
Теорема: |
Проблема останова игры «Жизнь» неразрешима. |
Доказательство: |
Заметим, что если существует МТ, которая по начальной конфигурации игры «Жизнь» может определить, завершается ли она, то та же МТ может определить останавливается ли любая МТ, что противоречит неразрешимости проблемы останова для МТ. Следовательно, необходимо описать процесс построения МТ в игре «Жизнь».
Мы рассмотрим только общие свойства частей МТ и конструкций, нужных для их построения, так как при построении МТ возникает большое количество технически сложных вспомогательных элементов[1]. Конечный автоматКонечный автомат представляет собой двумерный массив с двумя входами: предыдущее состояние, получаемое от детектора сигнала, и считанный символ от одного из стеков — для выбора ряда и колонки ячейки, в которой лежит информация о переходе. Детектор сигналаДетектор сигнала распознает информацию, полученную от конечного автомата, и передает ее дальше: информацию о следующем состоянии — обратно в автомат (с задержкой), где она используется для выбора адреса ряда; информацию о символе для записи — на один из стеков. СтекЛента МТ представлена в виде двух стеков, которые могут эмулировать передвижение головки чтения записи по ленте: в каждом цикле один стек делает push символа, другой — pop. Контроллер стекаКонтроллер стека производит конструкцию из планеров, необходимую стекам для произведения push или pop, осуществляет перемещение символов. Некоторые конструкцииПчелиная королева |
См.также
- Неразрешимость исчисления предикатов первого порядка
- Задача о выводе в полусистеме Туэ
- Задача о замощении
- Однозначность грамматики
- Неразрешимость задачи об эквивалентности КС-грамматик
- Неразрешимость проблемы существования решения диофантова уравнения в целых числах