Неопределённый интеграл — различия между версиями
Rybak (обсуждение | вклад) |
Rybak (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
− | Пусть имеется функция <tex>y = f(x)</tex>, заданная на <tex>[a; b]</tex>. Требуется найти функцию <tex>F(x)</tex>, такую, что <tex>F'(x) = f(x) \forall v \in [a; b]</tex>. Любая такая функция называется первообразной <tex>f</tex>. | + | Пусть имеется [[Отображения|функция]] <tex>y = f(x)</tex>, заданная на <tex>[a; b]</tex>. Требуется найти функцию <tex>F(x)</tex>, такую, что <tex>F'(x) = f(x) \forall v \in [a; b]</tex>. Любая такая функция называется первообразной <tex>f</tex>. |
{{Утверждение | {{Утверждение |
Версия 17:20, 29 ноября 2010
Эта статья находится в разработке!
Пусть имеется функция , заданная на . Требуется найти функцию , такую, что . Любая такая функция называется первообразной .
Утверждение: |
Если , то |
Пусть . непрерывны, следовательно, непрерывна и , и можно применить теорему Лагранжа:
|
Пусть
задана на . Тогда совокупность всех её первообразных называется неопределённым интегралом и записывается:В силы исторической традиции равенство обычно записывают короче:
- .
Также принято там, где нужно принимать под
конкретную первообразную.В некотором смысле, операции дифференцирования и взятия неопределённого интеграла взаимно обратны:
Имеются две стандартные формулы для неопределённых интегралов.
1) Интегрирование по частям
2) Формула подстановки
- :
- . Докажем, что . Продифференцируем левую часть уравнения:
- , но
, следовательно, , что и требовалось доказать.