Эта статья находится в разработке!
Определение
Пусть имеется функция [math]y = f(x)[/math], заданная на [math][a; b][/math].
Определение: |
Функция [math]F(x)[/math], такая, что [math]F'(x) = f(x)\ \forall x \in [a; b][/math], называется первообразной [math]f[/math]. |
Утверждение: |
Если [math]F_1' = f, F_2' = f[/math], то [math]F_2 = F_1 + \mathrm{const}[/math] |
[math]\triangleright[/math] |
Пусть [math]g(x) = F_2(x) - F_1(x)[/math]. [math]F_1, F_2[/math] непрерывны(так как они имеют производную), следовательно, непрерывна и [math]g[/math], и можно применить теорему Лагранжа:
- [math]g(x_2) - g(x_1) = g'(c)(x_2 - x_1)[/math], но [math]g' = F_2' - F_1' = 0[/math].
Таким образом, [math]g(x_2) = g(x_1)\ \forall x_1, x_2 \in [a; b][/math]. |
[math]\triangleleft[/math] |
Пусть [math]f[/math] задана на [math][a; b][/math]. Тогда совокупность всех её первообразных называется неопределённым интегралом и записывается:
- [math]\int f(x)dx = \{F(x) + C, F' = f, c \in \mathbb R\}[/math]
В силы исторической традиции равенство обычно записывают короче:
- [math]\int f(x)dx = F(x) + C[/math].
Также принято там, где нужно, понимать под [math]\int f(x)dx[/math] конкретную первообразную.
В некотором смысле, операции дифференцирования и взятия неопределённого интеграла взаимно обратны:
- [math]\left ( \int f(x) dx \right )' = f(x)[/math]
- [math]\int f'(x)dx = f(x)[/math]
Формулы
Имеются две стандартные формулы для неопределённых интегралов.
1) Интегрирование по частям
- [math](uv)' = u'v + uv'[/math]
- [math]uv = \int (uv)'dx = \int u'v dx + \int uv' dx[/math]
- [math]u'dx = du, \qquad v'dx = dv[/math]
- [math]\int udv = uv - \int vdu[/math]
2) Формула подстановки
- [math]F(x) = \int f(x)dx, \qquad x = \varphi(t), t = \varphi^{-1}(x)[/math]:
- [math]G(t) = \int f(\varphi(t))\varphi'(t)dt[/math]. Докажем, что [math]F(x) = G(\varphi^{-1}(x))[/math]. Продифференцируем левую часть уравнения:
- [math](G(\varphi^{-1}(x)))' = G'(t)t' = f(\varphi(t))\varphi'(t)t'[/math], но
[math]t' = \frac 1{\varphi'(t)}[/math], следовательно,
[math](G(\varphi^{-1}(x)))' = f(\varphi(t)) = f(x)[/math], что и требовалось доказать.
Условия интегрируемости
Каким условиям должна удовлетворять функция [math]f[/math], чтобы у неё существовала первообразная?
Развивая теорию Римана, мы получим, что если [math]f[/math] непрерывна на [math][a; b][/math], то у неё существует неопределённый интеграл.
Условие достаточное, и не описывает все функции, у которых существует первообразная, например:
- [math]f(x) = \begin{cases}0 & x = 0\\ x^2 \sin \frac 1x & x \ne 0\end{cases}[/math]
- [math]f'(x) = 2x \sin \frac 1x - \cos \frac 1 x, \qquad x \ne 0[/math]
- [math]f'(0) = \lim\limits_{x \rightarrow 0} \frac {f(0 + \Delta x) - f(0)}{\Delta x} = \lim\limits_{x \rightarrow 0} \Delta x \sin \frac 1 {\Delta x} = 0[/math]
Получаем производную, разрывную в нуле. Но у этой функции существует первообразная, равная [math]f[/math].
Для установления точных условий интегрируемости интеграла Римана мало, для этого требуется понятие ингерала Лебега.