Удаление eps-правил из грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 27: Строка 27:
 
=== Модификация с очередью ===
 
=== Модификация с очередью ===
 
Заведем несколько структур:
 
Заведем несколько структур:
*<tex>concerned\text{-}rules[nonterm_i]</tex> {{---}} для каждого нетерминала будем хранить список номеров тех правил, в правой части которых он встречается;
+
*<tex>\mathtt{is\text{-}epsilon[nonterm_i]}</tex> {{---}} для каждого нетерминала будем хранить пометку, является он <tex>\varepsilon</tex>-порождающим или нет.
*<tex>counter[rule_i]</tex> {{---}} для каждого правила будем хранить счетчик количества нетерминалов в правой части, которые еще не помечены <tex>\varepsilon</tex>-порождающими;
+
*<tex>\mathtt{concerned\text{-}rules[nonterm_i]}</tex> {{---}} для каждого нетерминала будем хранить список номеров тех правил, в правой части которых он встречается;
*<tex>Q</tex> {{---}} очередь нетерминалов, помеченных <tex>\varepsilon</tex>-порождающими, но еще не обработанных.
+
*<tex>\mathtt{counter[rule_i]}</tex> {{---}} для каждого правила будем хранить счетчик количества нетерминалов в правой части, которые еще не помечены <tex>\varepsilon</tex>-порождающими;
 +
*<tex>\mathtt{Q}</tex> {{---}} очередь нетерминалов, помеченных <tex>\varepsilon</tex>-порождающими, но еще не обработанных.
  
Сначала объявим все нетерминалы не <tex>\varepsilon</tex>-порождающими, а в <tex>counter</tex> для каждого правила запишем количество нетерминалов справа от него. Те правила, для которых <tex>counter</tex> сразу же оказался нулевым, добавим в <tex>Q</tex>, так как это <tex>\varepsilon</tex>-правила. Теперь будем доставать из очереди по одному нетерминалу, смотреть на список <tex>concerned\text{-}rules</tex> для него и уменьшать <tex>counter</tex> для всех правил оттуда. Если <tex>counter</tex> какого-то правила в этот момент обнулился, то нетерминал из левой части этого правила помечается <tex>\varepsilon</tex>-порождающим, если еще не был помечен до этого, и добавляется в <tex>Q</tex>. Продолжаем, пока очередь не станет пустой.
+
Сначала проставим <tex>\mathtt{false}</tex> в <tex>\mathtt{is\text{-}epsilon}</tex> для всех нетерминалов, а в <tex>\mathtt{counter}</tex> для каждого правила запишем количество нетерминалов справа от него. Те правила, для которых <tex>\mathtt{counter}</tex> сразу же оказался нулевым, добавим в <tex>\mathtt{Q}</tex> и объявим истинным соответствующий <tex>\mathtt{is\text{-}epsilon}</tex>, так как это <tex>\varepsilon</tex>-правила. Теперь будем доставать из очереди по одному нетерминалу, смотреть на список <tex>\mathtt{concerned\text{-}rules}</tex> для него и уменьшать <tex>\mathtt{counter}</tex> для всех правил оттуда. Если <tex>\mathtt{counter}</tex> какого-то правила в этот момент обнулился, то нетерминал из левой части этого правила помечается <tex>\varepsilon</tex>-порождающим, если еще не был помечен до этого, и добавляется в <tex>\mathtt{Q}</tex>. Продолжаем, пока очередь не станет пустой.
  
 
=== Время работы алгоритма ===
 
=== Время работы алгоритма ===
Строка 56: Строка 57:
  
 
# Добавить все правила из <tex>P</tex> в <tex>P'</tex>.
 
# Добавить все правила из <tex>P</tex> в <tex>P'</tex>.
# Найти все <tex>\varepsilon</tex>-порождаюшие нетерминалы]].
+
# Найти все <tex>\varepsilon</tex>-порождаюшие нетерминалы.
# Для каждого правила вида <tex>A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k</tex> (где <tex>\alpha_i</tex> — последовательности из терминалов и нетерминалов, <tex>B_j</tex> — <tex>\varepsilon</tex>-порождающие нетерминалы) добавить в <tex>P'</tex> все возможные варианты правил, в которых либо присутствует, либо удалён каждый из нетерминалов <tex>B_j\; (1 \le j \le k)</tex>.
+
# Для каждого правила вида <tex>A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k</tex> (где <tex>\alpha_i</tex> — последовательности из терминалов и нетерминалов, <tex>B_j</tex> — <tex>\varepsilon</tex>-порождающие нетерминалы) добавить в <tex>P'</tex> все возможные варианты правил, в которых либо присутствует, либо удалён каждый из нетерминалов <tex>B_j\; (1 \leqslant j \leqslant k)</tex>.
 
# Удалить все <tex>\varepsilon</tex>-правила из <tex>P'</tex>.
 
# Удалить все <tex>\varepsilon</tex>-правила из <tex>P'</tex>.
 
# Если в исходной грамматике <tex>\Gamma</tex> выводилось <tex>\varepsilon</tex>, то необходимо добавить новый нетерминал <tex>S'</tex>, сделать его стартовым, добавить правило <tex>S' \rightarrow S|\varepsilon</tex>.
 
# Если в исходной грамматике <tex>\Gamma</tex> выводилось <tex>\varepsilon</tex>, то необходимо добавить новый нетерминал <tex>S'</tex>, сделать его стартовым, добавить правило <tex>S' \rightarrow S|\varepsilon</tex>.
Строка 86: Строка 87:
 
'''Предположение индукции'''. Пусть из <tex>A \underset{\Gamma}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{\Gamma'}{\Rightarrow}^*w </tex>.<br/>
 
'''Предположение индукции'''. Пусть из <tex>A \underset{\Gamma}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{\Gamma'}{\Rightarrow}^*w </tex>.<br/>
 
'''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{\Gamma}{\Rightarrow}Y_1 Y_2...Y_m \underset{\Gamma}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{\Gamma}{\Rightarrow}^*w_i</tex>.<br/>
 
'''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{\Gamma}{\Rightarrow}Y_1 Y_2...Y_m \underset{\Gamma}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{\Gamma}{\Rightarrow}^*w_i</tex>.<br/>
Пусть <tex>Y_{i_1}, Y_{i_2}, ..., Y_{i_p}</tex> — подпоследовательность, состоящая из всех элементов, таких, что <tex>w_{i_k} \ne \varepsilon</tex>, то есть <tex>Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma}{\Rightarrow}^*w</tex>. <tex>p \ge 1</tex>, поскольку <tex>w \ne \varepsilon</tex>. Значит, <tex>A \rightarrow Y_{i_1} Y_{i_2} ... Y_{i_p}</tex> является правилом в <tex>\Gamma'</tex> по построению <tex>\Gamma'</tex>.<br/>
+
Пусть <tex>Y_{i_1}, Y_{i_2}, ..., Y_{i_p}</tex> — подпоследовательность, состоящая из всех элементов, таких, что <tex>w_{i_k} \ne \varepsilon</tex>, то есть <tex>Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma}{\Rightarrow}^*w</tex>. <tex>p \geqslant 1</tex>, поскольку <tex>w \ne \varepsilon</tex>. Значит, <tex>A \rightarrow Y_{i_1} Y_{i_2} ... Y_{i_p}</tex> является правилом в <tex>\Gamma'</tex> по построению <tex>\Gamma'</tex>.<br/>
 
Так как каждое из порождений <tex>Y_i \underset{\Gamma}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов, к ним можно применить предположение индукции и заключить, что, если <tex>w_i \ne \varepsilon</tex>, то <tex>Y_i \underset{\Gamma'}{\Rightarrow}^*w_i</tex>.<br/>
 
Так как каждое из порождений <tex>Y_i \underset{\Gamma}{\Rightarrow}^*w_i</tex> содержит менее <tex>n</tex> шагов, к ним можно применить предположение индукции и заключить, что, если <tex>w_i \ne \varepsilon</tex>, то <tex>Y_i \underset{\Gamma'}{\Rightarrow}^*w_i</tex>.<br/>
 
Таким образом, <tex>A \underset{\Gamma'}{\Rightarrow} Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma'}{\Rightarrow}^* w</tex>.
 
Таким образом, <tex>A \underset{\Gamma'}{\Rightarrow} Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma'}{\Rightarrow}^* w</tex>.
Строка 121: Строка 122:
 
:<tex>A\rightarrow a</tex>
 
:<tex>A\rightarrow a</tex>
 
:<tex>B\rightarrow A|AC|C</tex>
 
:<tex>B\rightarrow A|AC|C</tex>
:<tex>C\rightarrow c</tex>:
+
:<tex>C\rightarrow c</tex>
  
 
== Источники информации ==
 
== Источники информации ==

Версия 01:55, 9 апреля 2016

Используемые определения

Определение:
Правила вида [math]A \to \varepsilon[/math] называются [math]\varepsilon[/math]-правилами (англ. [math]\varepsilon[/math]-rule).


Определение:
Нетерминал [math]A[/math] называется [math]\varepsilon[/math]-порождающим (англ. [math]\varepsilon[/math]-generating), если [math]A \Rightarrow^* \varepsilon[/math].


Алгоритм поиска ε-порождающих нетерминалов

Вход: КС-грамматика [math] \Gamma=\langle N,\Sigma, P, S \rangle[/math].
Выход: множество [math]\varepsilon[/math]-порождающих нетерминалов.

  1. Найти все [math]\varepsilon[/math]-правила. Составить множество, состоящее из нетерминалов, входящих в левые части таких правил.
  2. Перебираем правила грамматики [math]\Gamma[/math]. Если найдено правило [math]A \rightarrow C_1C_2...C_k[/math], для которого верно, что каждый [math]C_i[/math] принадлежит множеству, то добавить [math]A[/math] в множество.
  3. Если на шаге 2 множество изменилось, то повторить шаг 2.

Доказательство корректности

Теорема:
Описанный выше алгоритм находит все [math]\varepsilon[/math]-порождающие нетерминалы грамматики [math]\Gamma[/math].
Доказательство:
[math]\triangleright[/math]

Для доказательства корректности алгоритма достаточно показать, что, если множество [math]\varepsilon[/math]-порождающих нетерминалов на очередной итерации алгоритма не изменялось, то алгоритм нашел все [math]\varepsilon[/math]-порождающие нетерминалы.

Пусть после завершения алгоритма существуют нетерминалы такие, что они являются [math]\varepsilon[/math]-порождающими, но не были найдены алгоритмом. Выберем из этих нетерминалов нетерминал [math]B[/math], из которого выводится [math]\varepsilon[/math] за наименьшее число шагов. Тогда в грамматике есть правило [math]B \rightarrow C_1C_2...C_k[/math], где каждый нетерминал [math]C_i[/math][math]\varepsilon[/math]-порождающий. Каждый [math]C_i[/math] входит в множество [math]\varepsilon[/math]-порождающих нетерминалов, так как иначе вместо [math]B[/math] необходимо было взять [math]C_i[/math]. Следовательно, на одной из итераций алгоритма [math]B[/math] уже добавился в множество [math]\varepsilon[/math]-порождающих нетерминалов. Противоречие. Следовательно, алгоритм находит все [math]\varepsilon[/math]-порождающие нетерминалы.
[math]\triangleleft[/math]

Модификация с очередью

Заведем несколько структур:

  • [math]\mathtt{is\text{-}epsilon[nonterm_i]}[/math] — для каждого нетерминала будем хранить пометку, является он [math]\varepsilon[/math]-порождающим или нет.
  • [math]\mathtt{concerned\text{-}rules[nonterm_i]}[/math] — для каждого нетерминала будем хранить список номеров тех правил, в правой части которых он встречается;
  • [math]\mathtt{counter[rule_i]}[/math] — для каждого правила будем хранить счетчик количества нетерминалов в правой части, которые еще не помечены [math]\varepsilon[/math]-порождающими;
  • [math]\mathtt{Q}[/math] — очередь нетерминалов, помеченных [math]\varepsilon[/math]-порождающими, но еще не обработанных.

Сначала проставим [math]\mathtt{false}[/math] в [math]\mathtt{is\text{-}epsilon}[/math] для всех нетерминалов, а в [math]\mathtt{counter}[/math] для каждого правила запишем количество нетерминалов справа от него. Те правила, для которых [math]\mathtt{counter}[/math] сразу же оказался нулевым, добавим в [math]\mathtt{Q}[/math] и объявим истинным соответствующий [math]\mathtt{is\text{-}epsilon}[/math], так как это [math]\varepsilon[/math]-правила. Теперь будем доставать из очереди по одному нетерминалу, смотреть на список [math]\mathtt{concerned\text{-}rules}[/math] для него и уменьшать [math]\mathtt{counter}[/math] для всех правил оттуда. Если [math]\mathtt{counter}[/math] какого-то правила в этот момент обнулился, то нетерминал из левой части этого правила помечается [math]\varepsilon[/math]-порождающим, если еще не был помечен до этого, и добавляется в [math]\mathtt{Q}[/math]. Продолжаем, пока очередь не станет пустой.

Время работы алгоритма

Базовый алгоритм работает за [math]O(\left| \Gamma \right| ^ 2)[/math]. В алгоритме с модификацией нетерминал попадает в очередь ровно один раз, соответственно ровно один раз мы пройдемся по списку правил, в правой части которых он лежит. Суммарно получается [math]O(\left| \Gamma \right|)[/math].

Пример

Рассмотрим грамматику:

[math]S\rightarrow ABC|DS[/math]
[math]A\rightarrow \varepsilon[/math]
[math]B\rightarrow AC[/math]
[math]C\rightarrow \varepsilon[/math]
[math]D\rightarrow d[/math]
  1. Возьмём множество состоящее из [math]\varepsilon[/math]-порождающих нетерминалов [math]\lbrace A, C \rbrace[/math].
  2. Добавим [math]B[/math] в множество, так как правая часть правила [math]B\rightarrow AC[/math] состоит только из нетерминалов из множества.
  3. Повторим второй пункт для правила [math]S\rightarrow ABC[/math] и получим множество [math]\lbrace A, B, C, S \rbrace[/math].
  4. Больше нет нерассмотренных правил, содержащих справа только нетерминалы из множества.

Таким образом [math]\varepsilon[/math]-порождающими нетерминалами являются [math]A[/math], [math]B[/math], [math]C[/math] и [math]S[/math].

Алгоритм удаления ε-правил из грамматики

Вход: КС-грамматика [math] \Gamma=\langle N,\Sigma, P, S \rangle[/math].
Выход: КС-грамматика [math] \Gamma'=\langle N,\Sigma, P', S' \rangle[/math] без [math]\varepsilon[/math]-правил (может присутствовать правило [math]S \rightarrow \varepsilon[/math], но в этом случае [math]S[/math] не встречается в правых частях правил); [math]L(\Gamma') = L(\Gamma)[/math].

  1. Добавить все правила из [math]P[/math] в [math]P'[/math].
  2. Найти все [math]\varepsilon[/math]-порождаюшие нетерминалы.
  3. Для каждого правила вида [math]A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 ... B_k \alpha_k[/math] (где [math]\alpha_i[/math] — последовательности из терминалов и нетерминалов, [math]B_j[/math][math]\varepsilon[/math]-порождающие нетерминалы) добавить в [math]P'[/math] все возможные варианты правил, в которых либо присутствует, либо удалён каждый из нетерминалов [math]B_j\; (1 \leqslant j \leqslant k)[/math].
  4. Удалить все [math]\varepsilon[/math]-правила из [math]P'[/math].
  5. Если в исходной грамматике [math]\Gamma[/math] выводилось [math]\varepsilon[/math], то необходимо добавить новый нетерминал [math]S'[/math], сделать его стартовым, добавить правило [math]S' \rightarrow S|\varepsilon[/math].

Доказательство корректности

Теорема:
Если грамматика [math]\Gamma'[/math] была построена с помощью описанного выше алгоритма по грамматике [math]\Gamma[/math], то [math]L(\Gamma') = L(\Gamma)[/math].
Доказательство:
[math]\triangleright[/math]

Сначала докажем, что, если не выполнять шаг 5 алгоритма, то получится грамматика [math]\Gamma' : L(\Gamma') = L(\Gamma) \setminus \lbrace \varepsilon \rbrace [/math].
Для этого достаточно доказать, что [math]A \underset{\Gamma'}{\Rightarrow}^*w[/math] тогда и только тогда, когда [math]A \underset{\Gamma}{\Rightarrow}^*w[/math] и [math]w \ne \varepsilon[/math] (*).

[math]\Rightarrow[/math]<br\> Пусть [math]A \underset{\Gamma'}{\Rightarrow}^*w[/math]  и  [math]w \ne \varepsilon[/math].
Докажем индукцией по длине порождения в грамматике [math]\Gamma'[/math], что [math]A \underset{\Gamma}{\Rightarrow}^*w[/math].
База. [math]A \underset{\Gamma'}{\Rightarrow} w[/math].
В этом случае в [math]\Gamma'[/math] есть правило [math]A \rightarrow w[/math]. По построению [math]\Gamma'[/math] в [math]\Gamma[/math] есть правило [math]A \rightarrow \alpha[/math], причем [math]\alpha[/math] — цепочка [math]w[/math], элементы которой, возможно, перемежаются [math]\varepsilon[/math]-порождающими нетерминалами. Тогда в [math]\Gamma[/math] есть порождения [math]A \underset{\Gamma}{\Rightarrow} \alpha \underset{\Gamma}{\Rightarrow}^*w[/math].
Предположение индукции. Пусть из [math]A \underset{\Gamma'}{\Rightarrow}^*w \ne \varepsilon[/math] менее, чем за [math]n[/math] шагов, следует, что [math]A \underset{\Gamma}{\Rightarrow}^*w[/math].
Переход. Пусть в порождении [math]n[/math] шагов, [math]n \gt 1[/math]. Тогда оно имеет вид [math]A\underset{\Gamma'}{\Rightarrow}X_1 X_2...X_k \underset{\Gamma'}{\Rightarrow}^*w[/math], где [math]X_i \in N \cup \Sigma [/math]. Первое использованное правило должно быть построено по правилу грамматики [math]\Gamma[/math] [math]A \rightarrow Y_1 Y_2...Y_m[/math], где последовательность [math]Y_1 Y_2...Y_m[/math] совпадает с последовательностью [math]X_1 X_2...X_k[/math], символы которой, возможно, перемежаются [math]\varepsilon[/math]-порождающими нетерминалами.
Цепочку [math]w[/math] можно разбить на [math]w_1 w_2...w_k[/math], где [math]X_i \underset{\Gamma'}{\Rightarrow}^*w_i[/math]. Если [math]X_i[/math] — терминал, то [math]w_i = X_i[/math], a если нетерминал, то порождение [math]X_i \underset{\Gamma'}{\Rightarrow}^*w_i[/math] содержит менее [math]n[/math] шагов. По предположению [math]X_i \underset{\Gamma}{\Rightarrow}^*w_i[/math], значит [math]A \underset {\Gamma}{\Rightarrow} Y_1 Y_2...Y_m \underset{\Gamma}{\Rightarrow}^* X_1 X_2...X_k \underset{\Gamma}{\Rightarrow}^* w_1 w_2...w_k = w[/math].

[math]\Leftarrow[/math]
Пусть [math]A \underset{\Gamma}{\Rightarrow}^*w[/math]  и  [math]w \ne \varepsilon[/math].
Докажем индукцией по длине порождения в грамматике [math]\Gamma[/math], что [math]A \underset{\Gamma'}{\Rightarrow}^*w[/math].
База. [math]A \underset{\Gamma}{\Rightarrow} w[/math].
Правило [math]A \rightarrow w[/math] присутствует в [math]\Gamma[/math]. Поскольку [math]w \ne \varepsilon[/math], это же правило будет и в [math]\Gamma'[/math], поэтому [math]A \underset{\Gamma'}{\Rightarrow}^*w[/math].
Предположение индукции. Пусть из [math]A \underset{\Gamma}{\Rightarrow}^*w \ne \varepsilon[/math] менее, чем за [math]n[/math] шагов, следует, что [math]A \underset{\Gamma'}{\Rightarrow}^*w [/math].
Переход. Пусть в порождении [math]n[/math] шагов, [math]n \gt 1[/math]. Тогда оно имеет вид [math]A\underset{\Gamma}{\Rightarrow}Y_1 Y_2...Y_m \underset{\Gamma}{\Rightarrow}^*w[/math], где [math]Y_i \in N \cup \Sigma [/math]. Цепочку [math]w[/math] можно разбить на [math]w_1 w_2...w_m[/math], где [math]Y_i \underset{\Gamma}{\Rightarrow}^*w_i[/math].
Пусть [math]Y_{i_1}, Y_{i_2}, ..., Y_{i_p}[/math] — подпоследовательность, состоящая из всех элементов, таких, что [math]w_{i_k} \ne \varepsilon[/math], то есть [math]Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma}{\Rightarrow}^*w[/math]. [math]p \geqslant 1[/math], поскольку [math]w \ne \varepsilon[/math]. Значит, [math]A \rightarrow Y_{i_1} Y_{i_2} ... Y_{i_p}[/math] является правилом в [math]\Gamma'[/math] по построению [math]\Gamma'[/math].
Так как каждое из порождений [math]Y_i \underset{\Gamma}{\Rightarrow}^*w_i[/math] содержит менее [math]n[/math] шагов, к ним можно применить предположение индукции и заключить, что, если [math]w_i \ne \varepsilon[/math], то [math]Y_i \underset{\Gamma'}{\Rightarrow}^*w_i[/math].
Таким образом, [math]A \underset{\Gamma'}{\Rightarrow} Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{\Gamma'}{\Rightarrow}^* w[/math].

Подставив [math]S[/math] вместо [math]A[/math] в утверждение (*), видим, что [math]w \in L(\Gamma)[/math] для [math]w \ne \varepsilon[/math] тогда и только тогда, когда [math]w \in L(\Gamma')[/math]. Так как после выполнения шага 5 алгоритма в [math]\Gamma'[/math] могло добавиться только пустое слово [math]\varepsilon[/math], то язык, задаваемый КС-грамматикой [math]\Gamma'[/math], совпадает с языком, задаваемым КС-грамматикой [math]\Gamma[/math].
[math]\triangleleft[/math]

Время работы алгоритма

Рассмотрим грамматику [math]\Gamma[/math]:

[math]S\rightarrow T_1 T_2 T_3 \ldots T_n[/math]
[math]T_1\rightarrow t_1|\varepsilon[/math]
[math]T_2\rightarrow t_2|\varepsilon[/math]
[math]\ldots\[/math]
[math]T_n\rightarrow t_n|\varepsilon[/math]

[math]\left| \Gamma \right| = O(n)[/math]. Из нетерминала [math]S[/math] можно вывести [math]2^n[/math] сочетаний нетерминалов [math]T_i[/math]. Таким образом в худшем случае алгоритм работает за [math]O(2^{\left| \Gamma \right|})[/math].
Рассмотрим теперь грамматику с устраненными длинными правилами. После применения данного алгоритма, который работает за [math]O(\left| \Gamma \right|)[/math], в грамматике станет на [math]O(\left| \Gamma \right|)[/math] больше правил, но при этом все они будут размером [math]O(1)[/math]. Итого по-прежнему [math]\left| \Gamma \right| = O(n)[/math]. Однако алгоритм удаления [math]\varepsilon[/math]-правил будет работать за [math]O(\left| \Gamma \right|)[/math], поскольку для каждого правила можно будет добавить только [math]O(1)[/math] сочетаний нетерминалов.

Пример

Рассмотрим грамматику:

[math]S\rightarrow ABCd[/math]
[math]A\rightarrow a|\varepsilon[/math]
[math]B\rightarrow AC[/math]
[math]C\rightarrow c|\varepsilon[/math]

В ней [math]A[/math], [math]B[/math] и [math]C[/math] являются [math]\varepsilon[/math]-порождающими нетерминалами.

  1. Переберём для каждого правила все возможные сочетания ε-порождающих нетерминалов и добавим новые правила:
    • [math]S\rightarrow Ad|ABd|ACd|Bd|BCd|Cd|d[/math] для [math]S \rightarrow ABCd[/math]
    • [math]B \rightarrow A|C[/math] для [math]B \rightarrow AC[/math]
  2. Удалим праила [math]A\rightarrow \varepsilon[/math] и [math]C\rightarrow \varepsilon[/math]

В результате мы получим новую грамматику без [math]\varepsilon[/math]-правил:

[math]S\rightarrow Ad|ABd|ACd|ABCd|Bd|BCd|Cd|d[/math]
[math]A\rightarrow a[/math]
[math]B\rightarrow A|AC|C[/math]
[math]C\rightarrow c[/math]

Источники информации

См. также

Источники

  • Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — С. 273: ISBN 5-8459-0261-4 (рус.)
  • Chomsky normal form