Opij1sumwu — различия между версиями
(→Псевдокод) |
м (→Описание алгоритма) |
||
Строка 5: | Строка 5: | ||
}} | }} | ||
==Описание алгоритма== | ==Описание алгоритма== | ||
− | Для решения этой задачи, мы должны найти множество <tex>S</tex> работ, которые успеваем выполнить до дедлайна. Значит нам надо минимизировать: <tex>\sum\limits_{i \notin S} {w_{i}}</tex>. Будем решать эту задачу с помощью [[Динамическое_программирование|динамического программирования]] с использованием утверждений из решения задачи [[Opij1di|<tex> O \mid p_{i,j} = 1, d_i \mid - </tex>]]. | + | Для решения этой задачи, мы должны найти множество <tex>S</tex> работ, которые успеваем выполнить до дедлайна. Значит нам надо минимизировать: <tex>\sum\limits_{ i \notin S } {w_{i}}</tex>. Будем решать эту задачу с помощью [[Динамическое_программирование|динамического программирования]] с использованием утверждений из решения задачи [[Opij1di|<tex> O \mid p_{i,j} = 1, d_i \mid - </tex>]]. |
− | Рассмотрим работы в порядке неубывания дедлайнов: <tex>d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n}</tex>. Пусть мы нашли решение для работ <tex>1, 2, \ldots, i-1</tex>. Очевидно, что <tex>S \subseteq \{1, \ldots , i-1\}</tex>. | + | Рассмотрим работы в порядке неубывания дедлайнов: <tex>d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n}</tex>. Пусть мы нашли решение для работ <tex>1, 2, \ldots, i - 1</tex>. Очевидно, что <tex>S \subseteq \{1, \ldots , i - 1\}</tex>. |
− | Пусть <tex>h^S</tex> {{---}} вектор соответствующий множеству <tex>S</tex> из задачи [[Opij1di|<tex> O \mid p_{i,j} = 1, d_i \mid - </tex>]]. Тогда, для добавления работы <tex>i</tex> в множество <tex>S</tex> должно выполняться неравенство: <tex>m\cdot (d_i-m)-(km-\sum\limits_{j=1}^m {h^S(d_i-m+j)})+x(d_i) \geqslant m</tex>, где <tex>k=|S|</tex> и <tex>x(d_i)</tex> {{---}} количество периодов времени <tex>t</tex> со свойствами: <tex>d_i-m+1 \leqslant t \leqslant d_i</tex> и <tex>h^S(t) < m</tex>. Чтобы проверить это неравенство, нам нужно посчитать <tex>m</tex> чисел <tex>h^S(t)</tex>, <tex>t=d_i-m+1, \ldots, d_i</tex>. Для этого определим переменные: | + | Пусть <tex>h^S</tex> {{---}} вектор соответствующий множеству <tex>S</tex> из задачи [[Opij1di|<tex> O \mid p_{i,j} = 1, d_i \mid - </tex>]]. Тогда, для добавления работы <tex>i</tex> в множество <tex>S</tex> должно выполняться неравенство: <tex>m \cdot (d_i - m) - ( km - \sum\limits_{j = 1}^m {h^S(d_i - m + j)})+x(d_i) \geqslant m</tex>, где <tex>k=|S|</tex> и <tex>x(d_i)</tex> {{---}} количество периодов времени <tex>t</tex> со свойствами: <tex>d_i - m + 1 \leqslant t \leqslant d_i</tex> и <tex>h^S(t) < m</tex>. Чтобы проверить это неравенство, нам нужно посчитать <tex>m</tex> чисел <tex>h^S(t)</tex>, <tex>t=d_i - m + 1, \ldots, d_i</tex>. Для этого определим переменные: |
<tex>k_j= \begin{cases} | <tex>k_j= \begin{cases} | ||
− | h^S(d_i-m+j) & j \in \{1,\ldots ,m\} \\ | + | h^S(d_i - m + j) & j \in \{1 , \ldots , m\} \\ |
− | 0 & j \notin \{1, \ldots , m\} \\ | + | 0 & j \notin \{1 , \ldots , m\} \\ |
\end{cases}</tex>, | \end{cases}</tex>, | ||
<tex>l_j=\begin{cases} | <tex>l_j=\begin{cases} | ||
− | 1 & j \in \{1, \ldots, m\}\text{; } k_j < m \\ | + | 1 & j \in \{1 , \ldots , m\}\text{; } k_j < m \\ |
0 & \text{otherwise} \\ | 0 & \text{otherwise} \\ | ||
\end{cases} .</tex>. | \end{cases} .</tex>. | ||
− | Тогда можно заметить, что <tex>x(d_i)=\sum\limits_{j=1}^m {l_j}</tex>, так как <tex>l_j=1</tex> если <tex>1 \leqslant j \leqslant m</tex> и <tex>h^S(d_i-m+j) < m</tex> или <tex>d_i-m+1 \leqslant d_i-m+j \leqslant d_i</tex> и <tex>h^S(d_i-m+j) < m</tex>. Следовательно можно упростить исходное неравенство: <tex>m\cdot (d_i-m)-(km-\sum\limits_{j=1}^m {k_j})+\sum\limits_{j=1}^m {l_j} \geqslant m</tex> или <tex>m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m</tex>. | + | Тогда можно заметить, что <tex>x(d_i)=\sum\limits_{j = 1}^m {l_j}</tex>, так как <tex>l_j = 1</tex> если <tex>1 \leqslant j \leqslant m</tex> и <tex>h^S(d_i - m + j) < m</tex> или <tex>d_i - m + 1 \leqslant d_i - m + j \leqslant d_i</tex> и <tex>h^S(d_i - m + j) < m</tex>. Следовательно можно упростить исходное неравенство: <tex>m \cdot (d_i - m) - (km - \sum\limits_{j = 1}^m {k_j}) + \sum\limits_{j = 1}^m {l_j} \geqslant m</tex> или <tex>m \cdot (d_i - m - k)+ \sum\limits_{j = 1}^m {(k_j + l_j)} \geqslant m</tex>. |
− | Для динамического программирования определим <tex>f_i(k,k_1, \ldots , k_m)</tex> {{---}} минимальное значение целевой функции для расписания работ <tex>i, i+1, \ldots , n</tex>, позволяющее выполнить работы из множества <tex>S</tex> без опоздания, где <tex>k=|S|, S \subseteq \{1, \ldots , i-1\}</tex> и <tex>k_j=h^S(d_i-m+j)</tex>, где <tex>j=1, \ldots , m</tex>, то есть <tex>f_i(k,k_1, \ldots , k_m)=\min\limits_{S: |S|=k, S \subseteq \{1, \ldots , i-1 \}}(\sum\limits_{j=i}^n {w_jU_j})</tex>. | + | Для динамического программирования определим <tex>f_i(k , k_1 , \ldots , k_m)</tex> {{---}} минимальное значение целевой функции для расписания работ <tex>i , i+1 , \ldots , n</tex>, позволяющее выполнить работы из множества <tex>S</tex> без опоздания, где <tex>k = |S|, S \subseteq \{1, \ldots , i - 1\}</tex> и <tex>k_j=h^S(d_i - m + j)</tex>, где <tex>j = 1, \ldots , m</tex>, то есть <tex>f_i(k, k_1, \ldots , k_m) = \min\limits_{S: |S| = k, S \subseteq \{1, \ldots , i - 1 \}}(\sum\limits_{j = i}^n {w_jU_j})</tex>. |
− | Пусть <tex>p=d_{i+1}-d_i</tex>, тогда определим рекуррентное выражение для <tex>f_i(k,k_1, \ldots , k_m)</tex>: | + | Пусть <tex>p = d_{i + 1} - d_i</tex>, тогда определим рекуррентное выражение для <tex>f_i(k, k_1, \ldots , k_m)</tex>: |
− | <tex>f_i(k,k_1, \ldots , k_m)=\begin{cases} | + | <tex>f_i(k, k_1, \ldots , k_m)=\begin{cases} |
− | f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i, & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} < m (1)\\ | + | f_{i + 1}(k, k_{1 + p},k_{2 + p}, \ldots, k_{m + p}) + w_i, & m\cdot (d_i - m - k)+ \sum\limits_{j = 1}^m {(k_j + l_j)} < m (1)\\ |
− | \min(f_{i+1}(k,k_{1+p},k_{2+p}, \ldots ,k_{m+p})+w_i ; f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p})), & m\cdot (d_i-m-k)+ \sum\limits_{j=1}^m {(k_j+l_j)} \geqslant m (2)\\ | + | \min(f_{i + 1}(k, k_{1 + p}, k_{2 + p}, \ldots , k_{m + p}) + w_i ; f_{i + 1}(k + 1, k_{1 + p} + l_{1 + p},k_{2 + p} + l_{2 + p}, \ldots ,k_{m + p} + l_{m + p})), & m\cdot (d_i - m - k) + \sum\limits_{j = 1}^m {(k_j + l_j)} \geqslant m (2)\\ |
\end{cases}</tex> | \end{cases}</tex> | ||
− | c начальным условием: <tex>f_{n+1}(k,k_1,\ldots ,k_m)=0 </tex> для <tex>k,k_1,\ldots ,k_m = 0,1,\ldots ,m</tex>. | + | c начальным условием: <tex>f_{n + 1}(k, k_1, \ldots , k_m) = 0 </tex> для <tex>k, k_1, \ldots , k_m = 0, 1, \ldots , m</tex>. |
− | Если выполняется неравенство <tex>(1)</tex>, то мы не можем добавить работу <tex>i</tex> в множество <tex>S</tex> и поэтому <tex>f_i(k,k_1 \ldots , k_m) = f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i</tex>. | + | Если выполняется неравенство <tex>(1)</tex>, то мы не можем добавить работу <tex>i</tex> в множество <tex>S</tex> и поэтому <tex>f_i(k, k_1 \ldots , k_m) = f_{i + 1}(k, k_{1 + p}, k_{2 + p}, \ldots, k_{m + p}) + w_i</tex>. |
− | Если выполняется неравенство <tex>(2)</tex>, тогда мы может добавить работу <tex>i</tex> в множество <tex>S</tex> или не добавлять. Если мы добавим работу <tex>i</tex>, то <tex>f_i(k,k_1, \ldots , k_m) = f_{i+1}(k+1,k_{1+p}+l_{1+p},k_{2+p}+l_{2+p}, \ldots ,k_{m+p}+l_{m+p}) (3)</tex>. Если мы не добавим работу <tex>i</tex>, то по аналогии с первым случаем <tex>f_i(k,k_1, \ldots , k_m) = f_{i+1}(k,k_{1+p},k_{2+p}, \ldots, k_{m+p})+w_i (4)</tex>. Так как <tex>f_i(k,k_1, \ldots , k_m) = \min(\sum\limits_{j=i}^n {w_jU_j})</tex>, то нам надо взять минимум из значений <tex>(3)</tex> и <tex>(4)</tex>. | + | Если выполняется неравенство <tex>(2)</tex>, тогда мы может добавить работу <tex>i</tex> в множество <tex>S</tex> или не добавлять. Если мы добавим работу <tex>i</tex>, то <tex>f_i(k, k_1, \ldots , k_m) = f_{i + 1}(k + 1,k_{1 + p} + l_{1 + p},k_{2 + p}+l_{2 + p}, \ldots ,k_{m + p}+l_{m + p}) (3)</tex>. Если мы не добавим работу <tex>i</tex>, то по аналогии с первым случаем <tex>f_i(k, k_1, \ldots , k_m) = f_{i + 1}(k, k_{1 + p},k_{2 + p}, \ldots, k_{m + p}) +w_i (4)</tex>. Так как <tex>f_i(k, k_1, \ldots , k_m) = \min(\sum\limits_{j = i}^n {w_jU_j})</tex>, то нам надо взять минимум из значений <tex>(3)</tex> и <tex>(4)</tex>. |
+ | |||
+ | Ответ на задачу будет находиться в <tex>f_1(0, 0, \ldots , 0)</tex>. | ||
− | |||
==Псевдокод== | ==Псевдокод== | ||
<!--'''int''' solve('''int[]''' d, '''int[]''' w) | <!--'''int''' solve('''int[]''' d, '''int[]''' w) |
Версия 22:52, 23 мая 2016
Задача: |
Дано | одинаковых станков, которые работают параллельно, и работ, которые необходимо выполнить в произвольном порядке на всех станках. Любая работа на любом станке выполняется за единицу времени. Для каждой работы есть время окончания — время, до которого она должна быть выполнена. Требуется минимизировать , то есть суммарный вес всех просроченных работ.
Описание алгоритма
Для решения этой задачи, мы должны найти множество динамического программирования с использованием утверждений из решения задачи .
работ, которые успеваем выполнить до дедлайна. Значит нам надо минимизировать: . Будем решать эту задачу с помощьюРассмотрим работы в порядке неубывания дедлайнов:
. Пусть мы нашли решение для работ . Очевидно, что .Пусть . Тогда, для добавления работы в множество должно выполняться неравенство: , где и — количество периодов времени со свойствами: и . Чтобы проверить это неравенство, нам нужно посчитать чисел , . Для этого определим переменные:
— вектор соответствующий множеству из задачи,
.
Тогда можно заметить, что
, так как если и или и . Следовательно можно упростить исходное неравенство: или .Для динамического программирования определим
— минимальное значение целевой функции для расписания работ , позволяющее выполнить работы из множества без опоздания, где и , где , то есть .Пусть
, тогда определим рекуррентное выражение для :
c начальным условием:
для .Если выполняется неравенство
, то мы не можем добавить работу в множество и поэтому .Если выполняется неравенство
, тогда мы может добавить работу в множество или не добавлять. Если мы добавим работу , то . Если мы не добавим работу , то по аналогии с первым случаем . Так как , то нам надо взять минимум из значений и .Ответ на задачу будет находиться в
.Псевдокод
Время работы
Для определения времени работы алгоритма надо заметить, что
, где . Из рекуррентной формулы очевидно, что для подсчета одного значения нужно времени. Значит алгоритм работает за .См. также
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — c. 168 - 170. ISBN 978-3-540-69515-8