Объём — различия между версиями
Dominica (обсуждение | вклад) (→ВЫЧИСЛЕГНИЕ ПОВОРОТА) |
Dominica (обсуждение | вклад) (→ВЫЧИСЛЕНИЕ ПОВОРОТА) |
||
Строка 14: | Строка 14: | ||
Запишем матрицу перехода и немножко преобразуем её: | Запишем матрицу перехода и немножко преобразуем её: | ||
− | <tex>A = \begin{pmatrix} Oa_1 - Op \\ Oa_2 - Op\\ \dots \\ Oa_d - Op \end{pmatrix}^ \intercal = | + | <tex>A = \begin{pmatrix} \overrightarrow{Oa_1} - \overrightarrow{Op} \\ \overrightarrow{Oa_2} - \overrightarrow{Op} \\ \dots \\ \overrightarrow{Oa_d} - \overrightarrow{Op} \end{pmatrix}^ \intercal = |
\begin{pmatrix} a_1 - p \\ a_2 - p\\ \dots \\ a_d - p \end{pmatrix}^ \intercal = | \begin{pmatrix} a_1 - p \\ a_2 - p\\ \dots \\ a_d - p \end{pmatrix}^ \intercal = | ||
\begin{pmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p & 1 \end{pmatrix}^ \intercal</tex> | \begin{pmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p & 1 \end{pmatrix}^ \intercal</tex> | ||
Строка 27: | Строка 27: | ||
|proof= | |proof= | ||
Плоскость <tex>g</tex> определяется замыканием набора <tex>a_1, a_2, \dots, a_d</tex> ЛНЗ точек, значит, если <tex>p</tex> принадлежит множеству, то <tex>p</tex> является линейной комбинацией этих точек. В этом случае мы с помощью преобразований можем получить нулевую стррочку в матрице <tex>A</tex>, значит, ее определитель будет ноль. | Плоскость <tex>g</tex> определяется замыканием набора <tex>a_1, a_2, \dots, a_d</tex> ЛНЗ точек, значит, если <tex>p</tex> принадлежит множеству, то <tex>p</tex> является линейной комбинацией этих точек. В этом случае мы с помощью преобразований можем получить нулевую стррочку в матрице <tex>A</tex>, значит, ее определитель будет ноль. | ||
+ | }} | ||
+ | Разобъем все точки пространства(кроме тех, что лежат на плоскости) на два множества в зависимости от того, какой знак для них будет иметь детерминант <tex>A</tex>. Покажем, что наша классификация осмысленна. | ||
+ | {{Лемма | ||
+ | |id= pConvex | ||
+ | |statement= Получившиеся множества будут выпуклыми. | ||
+ | |proof= По определению выпуклого множества. Возьмем две любые точки <tex>p_1</tex> и <tex>p_2</tex>, лежащие в одной области. По аксиоматике существует вектор <tex>\overrightarrow{p_1p_2}</tex> и по определению можно сделать линейную комбинацию. Значит можем получить любую точку между <tex>p_1</tex> и <tex>p_2</tex>, лежащую с ними на одной прямой, отложив от <tex>p_1</tex> вектор <tex>\alpha \overrightarrow{p_1p_2}</tex>, где <tex>\alpha \in [0..1]</tex>. Если подставить это в определитель, то получим | ||
+ | |||
+ | <tex>\begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_1 + \alpha\overrightarrow{p_1p_2} & 1 \end{vmatrix} = | ||
+ | \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ \alpha p_2 + (1 - \alpha)p_1 & 1 \end{vmatrix} = | ||
+ | \alpha \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_2 & 1 \end{vmatrix} + | ||
+ | (1 - \alpha) \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_1 & 1 \end{vmatrix} </tex> | ||
+ | Матрицы одинакового знака, и стоящие перед ними коэффициенты положительны. Значит, у нашей точки будет тот же знак определителя, что и у <tex>p_1</tex> и <tex>p_2</tex>. | ||
}} | }} | ||
==ОБЪЕМ== | ==ОБЪЕМ== |
Версия 07:29, 9 декабря 2016
ВЫЧИСЛЕНИЕ ПОВОРОТА
У нас есть гиперплоскость
и точки задающие её. В мерном пространстве у нас будет линейно независимых(ЛНЗ) точек . Линейную независимость точек воспринимаем творчески.Определение: |
Будем называть набор из | точек линейно независимым, если мы можем выбрать одну из них, провести вектора от нее до всех остальных и получить ЛНЗ вектор.
Возьмем в нашем пространстве еще одну выделенную точку . Получившийся набор тоже будет ЛНЗ.
Пусть у нас есть какая-то выделенная зарание система координат
. Эта система приходит обычно вместе с какой-то задачей, и обычно она декартова. И у нас тоже будет сейчас декартова.Мы знаем, что можно составить матрицу перехода, если умеем выразить координаты векторов в исходной базовой системе координат
. А в нашем случае мы это сделать, конечно, можем: поскольку вектор существует между любыми парами точек, просто сопредставим нашим точкам вектора, соединяющие начало координат и очередную точку. Значит, если нам известны координаты точек, то нам известны координаты векторов в ситеме . Запишем матрицу перехода и немножко преобразуем её:
В дальнейшем нас будут интересовать детерминант этой матрицы и его знак:
Лемма: |
Точка лежит на плоскости тогда и только тогда, когда определитель матрицы равен . |
Доказательство: |
Плоскость | определяется замыканием набора ЛНЗ точек, значит, если принадлежит множеству, то является линейной комбинацией этих точек. В этом случае мы с помощью преобразований можем получить нулевую стррочку в матрице , значит, ее определитель будет ноль.
Разобъем все точки пространства(кроме тех, что лежат на плоскости) на два множества в зависимости от того, какой знак для них будет иметь детерминант
. Покажем, что наша классификация осмысленна.Лемма: |
Получившиеся множества будут выпуклыми. |
Доказательство: |
По определению выпуклого множества. Возьмем две любые точки и , лежащие в одной области. По аксиоматике существует вектор и по определению можно сделать линейную комбинацию. Значит можем получить любую точку между и , лежащую с ними на одной прямой, отложив от вектор , где . Если подставить это в определитель, то получимМатрицы одинакового знака, и стоящие перед ними коэффициенты положительны. Значит, у нашей точки будет тот же знак определителя, что и у и . |