Объём — различия между версиями
Dominica (обсуждение | вклад) (→Переход из одной системы координат в другую) |
м (→Вычисление объема) |
||
Строка 48: | Строка 48: | ||
Объём тела в <tex>n</tex>-мерном пространстве вычисляется как определённый интеграл: | Объём тела в <tex>n</tex>-мерном пространстве вычисляется как определённый интеграл: | ||
− | <tex>\idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)dx_1\dots dx_n </tex>, где <tex>\chi(x_1, \dots, x_n) | + | <tex>\displaystyle \idotsint\limits_{\mathbb{R}^n}\chi(x_1, \dots, x_n)\mathrm dx_1\dots \mathrm dx_n </tex>, где <tex>\chi(x_1, \dots, x_n)</tex> – характеристическая функция геометрического образа тела. |
==Вычисление объема простых фигур== | ==Вычисление объема простых фигур== |
Версия 15:22, 12 декабря 2016
Содержание
Общий случай
Объём в
-мерном пространстве определяется аналогично трехмерному случаю.Определение: |
Объем — это сопоставляемая фигуре численная характеристика, такая, что :
|
За единицу объема принимается объем
-мерного куба с ребром, равным единице.Переход из одной системы координат в другую
Пускай мы посчитали объем в одной системе координат и теперь хотим перейти из нее в другую систему координат. Поскольку объем не инвариантен, он изменится.
Теорема (О замене переменных в | -кратном интеграле):
Пусть даны две -мерные области: в пространстве и в пространстве , ограниченные каждая одной непрерывной — гладкой или кусочно-гладкой — поверхностью. Между ними с помощью формул
устанавливается взаимно однозначное соответствие. Тогда, при обычных предположениях относительно производных и сохранения знака якобианом ,интеграл от непрерывной в функции ) можетбыть преобразован по формуле . |
Доказательство: |
Подробное доказательство приведено в учебнике Фихтенгольца[1]. |
Вычисление объема
Объём тела в
-мерном пространстве вычисляется как определённый интеграл:, где – характеристическая функция геометрического образа тела.
Вычисление объема простых фигур
Параллелограмм
См. также
Примечания
- ↑ Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, том 3, 2003 г. — 440 c.