Вещественные числа — различия между версиями
м |
м (release) |
||
| Строка 32: | Строка 32: | ||
<tex> | <tex> | ||
| − | 1) |ab| = |a||b| | + | 1) |ab| = |a||b| \\ |
| − | 2) |x + y| \le |x| + |y| | + | 2) |x + y| \le |x| + |y| \\ |
| − | 3) |x - a| \le r \Leftrightarrow a - r \le x \le a + r | + | 3) |x - a| \le r \Leftrightarrow a - r \le x \le a + r |
</tex> | </tex> | ||
| Строка 41: | Строка 41: | ||
В множестве <tex> \mathbb Q </tex> выполняется '''аксиома Архимеда''': | В множестве <tex> \mathbb Q </tex> выполняется '''аксиома Архимеда''': | ||
| − | <tex> 0 < r < q | + | <tex> 0 < r < q \\ r, q \in \mathbb Q \Rightarrow \\ |
| − | \exists n \in \mathbb N : q < n | + | \exists n \in \mathbb N : q < n \cdot r |
</tex> | </tex> | ||
| Строка 78: | Строка 78: | ||
Тогда: <tex> d^2 = 2 \Rightarrow m^2 = 2n^2,\ </tex> 2 - простое, значит <tex>m</tex> делится на <tex>2n</tex> | Тогда: <tex> d^2 = 2 \Rightarrow m^2 = 2n^2,\ </tex> 2 - простое, значит <tex>m</tex> делится на <tex>2n</tex> | ||
| − | <tex> m = 2p,\ 4p^2 = 2n^2,\ n^2=2p^2;\ n\:\vdots\:2</tex>, противоречие. | + | <tex> m = 2p,\, 4p^2 = 2n^2,\ n^2=2p^2;\, n\:\vdots\:2</tex>, противоречие. |
Возможны два случая: либо <tex> d^2 < 2 </tex>, либо <tex> d^2 > 2 </tex>. Рассмотрим первый из них, второй доказывается аналогичным образом | Возможны два случая: либо <tex> d^2 < 2 </tex>, либо <tex> d^2 > 2 </tex>. Рассмотрим первый из них, второй доказывается аналогичным образом | ||
| Строка 87: | Строка 87: | ||
\delta^2 < \delta \Rightarrow (d + \delta)^2 < d^2 + 2d\delta + \delta = d^2 + (2d+1)\delta </tex> | \delta^2 < \delta \Rightarrow (d + \delta)^2 < d^2 + 2d\delta + \delta = d^2 + (2d+1)\delta </tex> | ||
| − | Заметим, что если <tex> \delta < \frac{2 - d^2}{2d+1}</tex>, то <tex>d^2 + (2d+1)\delta < 2 ,\ d^2 < 2,\ 2 - d^2 > 0 \Rightarrow \delta > 0 </tex> | + | Заметим, что если <tex> \delta < \frac{2 - d^2}{2d+1}</tex>, то <tex>d^2 + (2d+1)\delta < 2 ,\, d^2 < 2,\, 2 - d^2 > 0 \Rightarrow \delta > 0 </tex> |
| − | <tex> \delta_0 \in \mathbb Q; | + | <tex> \delta_0 \in \mathbb Q; \delta_0 = min\{ \frac{1}{3}, \frac{2-d^2}{2d+1} \} \in (0; 1) </tex>; |
| − | Для такого <tex> \delta_0: (d + \delta_0)^2 < 2 \ | + | Для такого <tex> \delta_0: (d + \delta_0)^2 < 2 \Rightarrow (d + \delta_0) \in A </tex> |
| − | <tex> A \le d | + | По предположению, <tex> A \le d \rightarrow d + \delta_0 \le d, \delta_0 \le 0 </tex>, противоречие. |
}} | }} | ||
Версия 02:42, 16 декабря 2010
Содержание
Натуральные числа
Множество натуральных чисел определяется следующим образом:
За числом в натуральном ряде непосредственно следует , между и других нет.
Гильберт:
Натуральные числа — первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел . Также
Рациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев: или
Модуль
| Определение: |
| — модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть — два числовых множества.
| Определение: |
| Запись означает, что . |
Аналогично определяются записи типа , и т. д. и т. п.
Если , то запись означает, что .
Неполнота числовой оси
| Утверждение: |
Пусть
Тогда |
|
Допустим, что такое существует и . Тогда возможны три случая: Случай невозможен. Докажем это. Предположим, что , Значит число можно представить в виде несократимой дроби . Тогда: 2 - простое, значит делится на , противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом 1) Для всех рациональных
Заметим, что если , то ; Для такого По предположению, , противоречие. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множестве
Получим множество, называемое множеством вещественных чисел — .
Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для выполняется аксиома непрерывности.
Существует несколько моделей построения :
- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что всюду плотно на :
В любом вещественном интервале найдется рациональное число.
Для нас этот важен тем, что он гарантирует единственность пополнения для выполнения аксиомы непрерывности.
Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.