КНФ — различия между версиями
Haposiwe (обсуждение | вклад) (Добавлено "см. также") |
Haposiwe (обсуждение | вклад) (Добавлена таблица истинность для медианы от 5 аргументов) |
||
Строка 106: | Строка 106: | ||
Медиана 5 аргументов: | Медиана 5 аргументов: | ||
+ | |||
+ | {| class="wikitable" style="width:16cm" border=1 | ||
+ | |+ | ||
+ | |-align="center" bgcolor=#EEEEFF | ||
+ | |<tex> x_1 </tex>||<tex> x_2 </tex>||<tex> x_3 </tex>||<tex>x_4</tex>||<tex> x_5 </tex>||<tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle </tex> || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 0 || 0 || 0 || 0 || <tex>(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 0 || 0 || 1 || 0 || <tex>(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \neg {x_5})</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 0 || 1 || 0 || 0 || <tex>(x_1 \lor x_2 \lor x_3 \lor \neg {x_4} \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 0 || 1 || 1 || 0 || <tex>(x_1 \lor x_2 \lor x_3 \lor \neg {x_4} \lor \neg {x_5})</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 1 || 0 || 0 || 0 || <tex>(x_1 \lor x_2 \lor \neg {x_3} \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 1 || 0 || 1 || 0 || <tex>(x_1 \lor x_2 \lor \neg {x_3} \lor x_4 \lor \neg {x_5})</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 0 || 1 || 1 || 0 || 0 || <tex>(x_1 \lor x_2 \lor \neg {x_3} \lor \neg {x_4} \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 0 || 0 || 1 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 1 || 0 || 0 || 0 || 0 || <tex>(x_1 \lor \neg {x_2} \lor x_3 \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 1 || 0 || 0 || 1 || 0 || <tex>(x_1 \lor \neg {x_2} \lor x_3 \lor x_4 \lor \neg {x_5})</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 1 || 0 || 1 || 0 || 0 || <tex>(x_1 \lor \neg {x_2} \lor x_3 \lor \neg {x_4} \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 0 || 1 || 0 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 0 || 1 || 1 || 0 || 0 || 0 || <tex>(x_1 \lor \neg {x_2} \lor \neg {x_3} \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 0 || 1 || 1 || 0 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 0 || 1 || 1 || 1 || 0 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 0 || 1 || 1 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 1 || 0 || 0 || 0 || 0 || 0 || <tex>(\neg {x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 1 || 0 || 0 || 0 || 1 || 0 || <tex>(\neg {x_1} \lor x_2 \lor x_3 \lor x_4 \lor \neg {x_5})</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 1 || 0 || 0 || 1 || 0 || 0 || <tex>(\neg {x_1} \lor x_2 \lor x_3 \lor \neg {x_4} \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 0 || 0 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 1 || 0 || 1 || 0 || 0 || 0 || <tex>(\neg {x_1} \lor x_2 \lor \neg {x_3} \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 0 || 1 || 0 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 0 || 1 || 1 || 0 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 0 || 1 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | ! 1 || 1 || 0 || 0 || 0 || 0 || <tex>(\neg {x_1} \lor \neg {x_2} \lor x_3 \lor x_4 \lor x_5)</tex> | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 0 || 0 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 0 || 1 || 0 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 0 || 1 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 1 || 0 || 0 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 1 || 0 || 1 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 1 || 1 || 0 || 1 || | ||
+ | |-align="center" bgcolor=#FFFFFF | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || | ||
+ | |} | ||
<tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) </tex> | <tex> \langle x_1, x_2, x_3, x_4, x_5 \rangle = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) \land \\ (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land \\ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) \land (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) </tex> |
Версия 22:07, 23 декабря 2017
Содержание
КНФ
Определение: |
Простой дизъюнкцией (англ. inclusive disjunction) или дизъюнктом (англ. disjunct) называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза. |
Простая дизъюнкция
- полная, если в неё каждая переменная (или её отрицание) входит ровно один раз;
- монотонная, если она не содержит отрицаний переменных.
Определение: |
Конъюнктивная нормальная форма, КНФ (англ. conjunctive normal form, CNF) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов. |
Пример КНФ:
СКНФ
Определение: |
Совершенная конъюнктивная нормальная форма, СКНФ (англ. perfect conjunctive normal form, PCNF) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, не равной тождественному нулю, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно .
- Для каждого отмеченного набора записываем дизъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть , то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Пример построения СКНФ для медианы
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно
.x | y | z | |
0 | 0 | 0 | 0 |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть
, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.x | y | z | ||
0 | 0 | 0 | 0 | |
---|---|---|---|---|
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 |
3. Все полученные дизъюнкции связываем операциями конъюнкции.
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Исключающее или:
Медиана 5 аргументов:
0 | 0 | 0 | 0 | 0 | 0 | |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 0 | |
0 | 0 | 0 | 1 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 0 | |
0 | 0 | 1 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 | 1 | 0 | |
0 | 0 | 1 | 1 | 0 | 0 | |
0 | 0 | 1 | 1 | 1 | 1 | |
0 | 1 | 0 | 0 | 0 | 0 | |
0 | 1 | 0 | 0 | 1 | 0 | |
0 | 1 | 0 | 1 | 0 | 0 | |
0 | 1 | 0 | 1 | 1 | 1 | |
0 | 1 | 1 | 0 | 0 | 0 | |
0 | 1 | 1 | 0 | 1 | 1 | |
0 | 1 | 1 | 1 | 0 | 1 | |
0 | 1 | 1 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | 1 | 0 | |
1 | 0 | 0 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | 1 | 1 | |
1 | 0 | 1 | 0 | 0 | 0 | |
1 | 0 | 1 | 0 | 1 | 1 | |
1 | 0 | 1 | 1 | 0 | 1 | |
1 | 0 | 1 | 1 | 1 | 1 | |
1 | 1 | 0 | 0 | 0 | 0 | |
1 | 1 | 0 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | 0 | 1 | |
1 | 1 | 0 | 1 | 1 | 1 | |
1 | 1 | 1 | 0 | 0 | 1 | |
1 | 1 | 1 | 0 | 1 | 1 | |
1 | 1 | 1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 | 1 | 1 |