Машинное обучение — различия между версиями
(→Глубокое обучение) |
(→Глубокое обучение) |
||
Строка 19: | Строка 19: | ||
*[[Глубокое обучение]] | *[[Глубокое обучение]] | ||
*[[Настройка глубокой сети]] | *[[Настройка глубокой сети]] | ||
− | *[[ | + | *[[Batch-normalization]] |
*[[Практики реализации нейронных сетей]] | *[[Практики реализации нейронных сетей]] | ||
*[[Сверточные нейронные сети]] | *[[Сверточные нейронные сети]] |
Версия 09:35, 18 января 2019
Содержание
Общие понятия
Классификация
Регрессия
Кластеризация
Ансамбли
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Практики реализации нейронных сетей
- Сверточные нейронные сети
- Generative Adversarial Nets (GAN)
Примеры кода
В разработке
- Общие понятия
- Модель алгоритма и ее выбор
- Кросс-валидация
- Мета-обучение
- Оценка качества в задачах классификации и регрессии
- Оценка качества в задаче кластеризации
- Линейная регрессия
- Логистическая регрессия
- Стохастический градиентный спуск
- Нейронные сети, перцептрон
- Рекуррентные нейронные сети
- Задача нахождения объектов на изображении
- Neural Style Transfer
- LSTM
- Метод опорных векторов (SVM)
- Дерево решений и случайный лес
- Байесовская классификация
- EM-алгоритм
- Бустинг, AdaBoost
- Ранжирование
- Рекомендательные системы
- Настройка гиперпараметров
- Уменьшение размерности
- Обучение с подкреплением
- Обучение с подкреплением
- Активное обучение
- Примеры кода на R
- Примеры кода на Java
- Обзор библиотек для машинного обучения на Python
- Выброс