Представление булевых функций линейными программами — различия между версиями
(→Связь между схемами и линейными программами) |
|||
Строка 24: | Строка 24: | ||
|statement= | |statement= | ||
<br> | <br> | ||
− | # По каждой логической схеме <tex>S</tex> со входами <tex>x_1, \dots , x_n</tex> и функциональными элементами <tex>v_1, \dots , v_m</tex> можно эффективно построить линейную программу <tex>P_S</tex> со входными переменными <tex>x_1, \dots , x_n</tex> и рабочими переменными <tex>x_{n + 1}, \dots , x_{n + m}</tex>, которая в любой переменной <tex>x_i, i | + | # По каждой логической схеме <tex>S</tex> со входами <tex>x_1, \dots , x_n</tex> и функциональными элементами <tex>v_1, \dots , v_m</tex> можно эффективно построить линейную программу <tex>P_S</tex> со входными переменными <tex>x_1, \dots , x_n</tex> и рабочими переменными <tex>x_{n + 1}, \dots , x_{n + m}</tex>, которая в любой переменной <tex>x_i, i \in [1 + n, m + n]</tex> вычисляет функцию <tex>f_{x_i}(x_1, \ldots , x_n)</tex>;<br><br> |
# По каждой линейной программе <tex>P</tex> со входными переменными <tex>x_1, \dots , x_n</tex>, вычисляющей в выходной переменной <tex>Z</tex> некоторую функцию <tex>F(x_1, \dots , x_n)</tex> можно эффективно построить логическую схему <tex>S_P</tex> со входами <tex>x_1,\dots , x_n</tex>, в которой имеется вершина <tex>v</tex> такая, что <tex>f_v(x_1, \dots , x_n) = F(x_1, \dots , x_n)</tex>. | # По каждой линейной программе <tex>P</tex> со входными переменными <tex>x_1, \dots , x_n</tex>, вычисляющей в выходной переменной <tex>Z</tex> некоторую функцию <tex>F(x_1, \dots , x_n)</tex> можно эффективно построить логическую схему <tex>S_P</tex> со входами <tex>x_1,\dots , x_n</tex>, в которой имеется вершина <tex>v</tex> такая, что <tex>f_v(x_1, \dots , x_n) = F(x_1, \dots , x_n)</tex>. | ||
|proof= | |proof= |
Версия 21:53, 20 августа 2020
Содержание
Линейные программы
Определения и основные понятия, связанные с булевыми функциями описаны в статье "определение булевой функции".
Определение: |
Линейная программа — последовательность строк вида | , в которой имеет вид , где — переменные, каждое из чисел меньше , а — -местная базисная функция. Такая линейная программа имеет входных переменных, которые не выражаются через операции вычисления.
Пример
Для базиса линейная программа может выглядеть следующим образом:
- ;
- ;
- .
Линейная программа с выделенными переменными порождает для каждого набора значений входных переменных естественный процесс вычисления:
- Переменным присваиваются значения , соответственно, а каждой из остальных переменных присваивается значение ;
- Последовательно выполняются присваивания программы , в результате чего каждая из переменных программы получит итоговое значение .
Определение: |
Программа | со входными переменными вычисляет в выходной переменной функцию , если для любого набора значений входов после завершения работы .
Связь между схемами и линейными программами
Как известно, булевы функции представимы в виде схем из функциональных элементов. В данном пункте мы определим связь между такими схемами и линейными программами.
Теорема: |
|
Доказательство: |
(1)
|
Пример
Воспользуемся только что доказанной теоремой, и построим на основании этой схемы линейную программу.
Установим соответствие между вершинами схемы и переменными: .
Результатом топологической сортировки данного графа может стать последовательность вершин: . Тогда программа будет иметь следующий вид:
Утверждение: |
Число команд в линейной программе , т.е. время ее выполнения, совпадает со сложностью схемы . Глубина схемы также имеет смысл с точки зрения времени вычисления. Именно, — это время выполнения на многопроцессорной системе. Действительно, все команды, соответствующие вершинам одинаковой глубины, можно выполнять параллельно на разных процессорах, так как результаты любой из них не используются в качестве аргументов другой. |
См. также
- Определение булевой функции
- Реализация булевой функции схемой из функциональных элементов
- Использование обхода в глубину для топологической сортировки
Литература
- Дехтярь М.И. Реализация булевых функций с помощью логических схем // Введение в схемы, автоматы и алгоритмы, 2007. URL: https://www.intuit.ru/studies/courses/1030/205/lecture/5306