Декартово дерево по неявному ключу — различия между версиями
Pashkal (обсуждение | вклад) |
Pashkal (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
==Основная идея== | ==Основная идея== | ||
+ | [[Файл:Tree_1.png|right|250px|thumb|Пример описанного дерева с демонстрацией определения ключа <tex>X</tex>]] | ||
Напомним, '''[[Декартово дерево]]''' {{---}} это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. Для решения задачи, поставленной в предыдущей главе, попробуем слегка модифицировать эту структуру. Если конкретнее, то оставим в нем только один ключ - ключ <tex>Y</tex>. Вместо второго ключа будем использовать следующую величину: '''количество элементов в нашей структуре, находящихся левее нашего элемента'''. Если проще, то будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу. | Напомним, '''[[Декартово дерево]]''' {{---}} это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. Для решения задачи, поставленной в предыдущей главе, попробуем слегка модифицировать эту структуру. Если конкретнее, то оставим в нем только один ключ - ключ <tex>Y</tex>. Вместо второго ключа будем использовать следующую величину: '''количество элементов в нашей структуре, находящихся левее нашего элемента'''. Если проще, то будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу. | ||
Заметим, что при этом сохранится структура [[Дерево_поиска,_наивная_реализация|двоичного дерева поиска]] по этому ключу(т.е. наше модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: наши операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется <tex>O(n)</tex> времени, где <tex>n</tex> {{---}} количество элементов в дереве. | Заметим, что при этом сохранится структура [[Дерево_поиска,_наивная_реализация|двоичного дерева поиска]] по этому ключу(т.е. наше модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: наши операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется <tex>O(n)</tex> времени, где <tex>n</tex> {{---}} количество элементов в дереве. | ||
− | Как же нам быть? Основная идея заключается в том, что такой ключ <tex>X</tex> сам по себе нигде не хранится. Вместо него будем хранить вспомогательную величину: '''количество вершин в поддереве нашей вершины'''(включая и саму нашу вершину). Обратим внимание, что все операции с обычным декартовым деревом делались сверху. Также заметим, что если по пути до некой вершины просуммируем все такие величины в левых поддеревьях, в которые мы не пошли, увеличенные на единицу, то придя в саму вершину, мы получим как раз ее ключ <tex>X</tex>. | + | Как же нам быть? Основная идея заключается в том, что такой ключ <tex>X</tex> сам по себе нигде не хранится. Вместо него будем хранить вспомогательную величину: '''количество вершин в поддереве нашей вершины'''(включая и саму нашу вершину). Обратим внимание, что все операции с обычным декартовым деревом делались сверху. Также заметим, что если по пути до некой вершины просуммируем все такие величины в левых поддеревьях, в которые мы не пошли, увеличенные на единицу, то придя в саму вершину и добавив к этой величине количество элементов в её левом поддереве, мы получим как раз ее ключ <tex>X</tex>. |
Версия 09:17, 27 апреля 2011
« |
Декартово дерево правит миром. За логарифм. | » |
— Неизвестный автор |
Постановка задачи
Возьмем структуру данных вектор. В её стандартной реализации мы умеем добавить элемент в конец, узнать значение элемента и изменить элемент по номеру, и удалить последний элемент. Расширим круг задач: теперь мы хотим добавлять элемент в любое место (с соответствующим изменением нумерации элементов) и удалять любой элемент (с тем же самым уточнением). Теперь нам нужно придумать структуру, называемую Декартово дерево по неявному ключу, или же rope(англ.веревка).
Основная идея
Напомним, Декартово дерево — это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. Для решения задачи, поставленной в предыдущей главе, попробуем слегка модифицировать эту структуру. Если конкретнее, то оставим в нем только один ключ - ключ . Вместо второго ключа будем использовать следующую величину: количество элементов в нашей структуре, находящихся левее нашего элемента. Если проще, то будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу.
Заметим, что при этом сохранится структура двоичного дерева поиска по этому ключу(т.е. наше модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: наши операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется времени, где — количество элементов в дереве.
Как же нам быть? Основная идея заключается в том, что такой ключ
сам по себе нигде не хранится. Вместо него будем хранить вспомогательную величину: количество вершин в поддереве нашей вершины(включая и саму нашу вершину). Обратим внимание, что все операции с обычным декартовым деревом делались сверху. Также заметим, что если по пути до некой вершины просуммируем все такие величины в левых поддеревьях, в которые мы не пошли, увеличенные на единицу, то придя в саму вершину и добавив к этой величине количество элементов в её левом поддереве, мы получим как раз ее ключ .