Неразрешимость задачи об эквивалентности КС-грамматик — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Лемма | {{Лемма | ||
|id = Лемма | |id = Лемма |
Текущая версия на 19:11, 4 сентября 2022
Лемма: |
Пусть контекстно-свободный. для набора слов — язык над алфавитом (для простоты будем считать, что ), каждое слово которого имеет вид , где . Тогда — |
Доказательство: |
Для доказательства построим МП-автомат с допуском по допускающему состоянию:
Переходы определим следующим образом:
|
Теорема: |
Задача об эквивалентности двух КС-грамматик неразрешима |
Доказательство: |
Будем доказывать от противного. Предположим, что данная задача разрешима. Тогда покажем, как с помощью нее разрешить язык ПСП. Пусть и входные последовательности для ПСП. Пусть . Тогда решение ПСП для последовательностей и существует только в том случае, когда . Перейдя к дополнению и применив закон де Моргана, мы получим, что решения для заданных последовательностей существует, только когда , где — алфавит для языков и . Но по лемме и — контекстно-свободные. Так как КС-языки замкнуты относительно объединения, то язык тоже контекстно-свободный. Построив КС-грамматики для языков и и воспользовавшись предположением, что задача об эквивалентности КС-грамматик разрешима, мы разрешим и язык ПСП. Но язык ПСП неразрешим. Следовательно, мы пришли к противоречию, и наше предположение неверно. |
См. также
Источники информации
- А. Маслов, Д. Стоцкий — Языки и автоматы. Издательство Мир, 1975