КНФ — различия между версиями
Proshev (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | |||
− | |||
== КНФ == | == КНФ == | ||
{{Определение | {{Определение | ||
Строка 113: | Строка 111: | ||
* [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 СКНФ — Википедия] | * [http://ru.wikipedia.org/wiki/%D0%A1%D0%9A%D0%9D%D0%A4 СКНФ — Википедия] | ||
* [http://dvo.sut.ru/libr/himath/w163rabk/index.htm Е.Л Рабкин, Ю.Б. Фарфоровская — Дискретная математика] | * [http://dvo.sut.ru/libr/himath/w163rabk/index.htm Е.Л Рабкин, Ю.Б. Фарфоровская — Дискретная математика] | ||
+ | |||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | |||
+ | [[Категория: Булевы функции ]] |
Версия 23:18, 16 января 2012
Содержание
КНФ
Определение: |
Простой дизъюнкцией или дизъюнктом называется дизъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза. |
Элементарная дизъюнкция
- правильная, если в неё каждая переменная входит не более одного раза (включая отрицание);
- полная, если в неё каждая переменная (или её отрицание) входит ровно 1 раз;
- монотонная, если она не содержит отрицаний переменных.
Определение: |
КНФ (Конъюнктивная Нормальная Форма) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов. |
Пример КНФ:
СКНФ
Определение: |
СКНФ (Совершенная Конъюнктивная Нормальная Форма) — это такая КНФ, которая удовлетворяет условиям:
|
Пример СКНФ:
Теорема: |
Для любой булевой функции , не равной тождественной единице, существует СКНФ, ее задающая. |
Доказательство: |
Поскольку инверсия функции равна единице на тех наборах, на которых равна нулю, то СДНФ для можно записать следующим образом: , где обозначает наличие или отсутствие отрицание приНайдём инверсию левой и правой части выражения: Применяя дважды к полученному в правой части выражению правило де Моргана, получаем: Последнее выражение и является СКНФ. Так как СКНФ получена из СДНФ, которая может быть посторена для любой функции, то теорема доказана. |
Алгоритм построения СКНФ по таблице истинности
- В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0.
- Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть 0, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
- Все полученные дизъюнкции связываем операциями конъюнкции.
Пример построения СКНФ
1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 0.
x | y | z | |
0 | 0 | 0 | 0 |
---|---|---|---|
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу : если значение некоторой переменной есть 0, то в дизъюнкцию включаем саму переменную, иначе ее отрицание.
x | y | z | ||
0 | 0 | 0 | 0 | |
---|---|---|---|---|
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 1 |
3. Все полученные дизъюнкции связываем операциями конъюнкции.
Примеры СКНФ для некоторых функций
Стрелка Пирса:
Исключающее или: