Гамильтоновы графы — различия между версиями
(→Теорема Хватала) |
(→Алгорит нахождения гамильтового цикла) |
||
Строка 81: | Строка 81: | ||
}} | }} | ||
− | == | + | ==Алгоритм нахождения гамильтового цикла== |
− | + | ||
− | + | Приведём два алгоритма поиска гамильтонова цикла. | |
− | + | ||
− | + | bool check_hamiltonian(graph g, bool[] used, int vert, int count, int[] next): | |
− | + | if (count == g.vertices): | |
− | + | next[vert] = 0 | |
− | + | return (vert; 0) in g.edges | |
− | + | for (i = 0; i < g.vertices; i++): | |
− | + | if (!used[i] && (vert; i) in g.edges): | |
− | + | used[i] = true | |
− | + | next[vert] = i | |
− | + | if (check_hamiltonian(g, used, i, count + 1, next)): | |
− | + | return true | |
− | + | used[i] = false | |
− | + | return false | |
+ | |||
+ | * used — отметки о посещении | ||
+ | * vert — текущая вершина | ||
+ | * count — количество посещённых вершин | ||
+ | |||
+ | Приведённая процедура работает следующим образом: перебираются всё рёбра из текущей вершины в ещё не посещённые. Чтобы проверить граф на гамильтоновость, необходимо запустить процедуру из вершины с номером 0 и параметром count = 1. Если процедура возвращает true, то в массиве next будет храниться следующая вершина на гамильтоновом цикле. | ||
==Источники== | ==Источники== |
Версия 23:30, 17 января 2012
Содержание
Основные определения
Определение: |
Гамильтоновым путём называется простой путь, приходящий через каждую вершину графа ровно один раз. |
Определение: |
Гамильтоновым циклом называют замкнутый гамильтонов путь. |
Определение: |
Граф называется полугамильтоновым, если он содержит гамильтонов путь. |
Определение: |
Граф называется гамильтоновым, если он содержит гамильтонов цикл. |
Очевидно, что любой гамильтонов граф также и полугамильтонов.
Достаточные условия гамильтоновости графа
Теорема Дирака
Теорема: |
Если и для любой вершины неориентированного графа , то - гамильтонов граф. |
Теорема Оре
Теорема: |
Если и для любых двух различных несмежных вершин и неориентированного графа , то - гамильтонов граф. |
Теорема Редеи-Камиона
Теорема: |
Любой сильносвязный турнир - гамильтонов. |
Теорема Гуйя-Ури
Теорема: |
Пусть G - сильносвязный ориентированный граф. G - гамильтонов. |
Теорема Хватала
Теорема (Хватал): |
Пусть:
Тогда если |
Теорема Поша
Теорема: |
Пусть граф G имеет вершин. Если для всякого число вершин со степенями, не превосходящими , меньше чем , и для нечетного число вершин степени не превосходит , то G - гамильтонов граф. |
Алгоритм нахождения гамильтового цикла
Приведём два алгоритма поиска гамильтонова цикла.
bool check_hamiltonian(graph g, bool[] used, int vert, int count, int[] next): if (count == g.vertices): next[vert] = 0 return (vert; 0) in g.edges for (i = 0; i < g.vertices; i++): if (!used[i] && (vert; i) in g.edges): used[i] = true next[vert] = i if (check_hamiltonian(g, used, i, count + 1, next)): return true used[i] = false return false
- used — отметки о посещении
- vert — текущая вершина
- count — количество посещённых вершин
Приведённая процедура работает следующим образом: перебираются всё рёбра из текущей вершины в ещё не посещённые. Чтобы проверить граф на гамильтоновость, необходимо запустить процедуру из вершины с номером 0 и параметром count = 1. Если процедура возвращает true, то в массиве next будет храниться следующая вершина на гамильтоновом цикле.
Источники
- Харари Ф. Теория графов: Пер. с англ. / Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 60 с.
- Седжвик Р. Фундаментальные алгоритмы на C++. Алгоритмы на графах. — СПб: ООО «ДиаСофтЮП», 2002.
- Гамильтонов граф