Теорема Редеи-Камиона — различия между версиями
| Строка 19: | Строка 19: | ||
Одно из ребер <tex> (u, v_1) </tex> или <tex> (v_1, u) </tex> обязательно содержится в <tex> T </tex>. | Одно из ребер <tex> (u, v_1) </tex> или <tex> (v_1, u) </tex> обязательно содержится в <tex> T </tex>. | ||
| − | + | Если ребро <tex> (u, v_1) \in ET </tex>, то путь <tex> (u \rightarrow P) </tex> - гамильтонов. | |
[[Файл: Redei_kamion_4.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | [[Файл: Redei_kamion_4.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | ||
| − | + | Пусть теперь ребро <tex> (u, v_1) \notin ET, v_i </tex> - первая вершина пути <tex> P </tex>, для которой ребро <tex> (u, v_i) \in T </tex>. | |
| − | + | Если такая вершина существует, то в <tex> T </tex> существует ребро <tex> (v_{i - 1}, u) </tex> и путь <tex> (v_1 \rightarrow \ldots \rightarrow v_{i - 1} \rightarrow u \rightarrow v_i \rightarrow \ldots v_n) </tex> – гамильтонов. | |
[[Файл: Redei_kamion_5.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | [[Файл: Redei_kamion_5.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | ||
| − | + | Если такой вершины не существует, то путь <tex> (P \rightarrow u) </tex> - гамильтонов. | |
[[Файл: Redei_kamion_6.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | [[Файл: Redei_kamion_6.png|250px|thumb|center|<font color=#ED1C24>Красным</font> цветом выделен искомый путь]] | ||
Версия 15:33, 26 февраля 2012
| Теорема (Редеи-Камиона (для пути)): |
В любом турнире есть гамильтонов путь. |
| Доказательство: |
|
Приведем доказательство по индукции по числу вершин в графе. Пусть - количество вершин в графе. База индукции: Очевидно, для утверждение верно. Индукционный переход: Пусть предположение верно для всех турниров с количеством вершин не более . Рассмотрим турнир с вершинами. Пусть – произвольная вершина турнира . Тогда турнир имеет вершин, значит, в нем есть гамильтонов путь . Одно из ребер или обязательно содержится в . Если ребро , то путь - гамильтонов. Пусть теперь ребро - первая вершина пути , для которой ребро . Если такая вершина существует, то в существует ребро и путь – гамильтонов. Если такой вершины не существует, то путь - гамильтонов. Значит, в любом случае в турнире существует гамильтонов путь, q.e.d. |
| Теорема (Редеи-Камиона (для цикла)): | ||||||||||
В любом сильно связанном турнире есть гамильтонов цикл. | ||||||||||
| Доказательство: | ||||||||||
|
Приведем доказательство по индукции по числу вершин в цикле. Пусть - количество вершин в графе. База индукции:
Индукционный переход:
| ||||||||||
| Лемма (Следствие): |
Турнир является сильно связанным тогда и только тогда, когда он имеет гамильтонов цикл. |
См. также
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы
- Ф. Харари: Теория графов