Skip quadtree: определение, время работы — различия между версиями
Gromak (обсуждение | вклад) (Новая страница: «<div style="background-color: #ABCDEF; font-size: 16px; font-weight: bold; color: #000000; text-align: center; padding: 4px; border-style: solid; border-width: 1p...») |
Gromak (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
== Операции над skip quadtree == | == Операции над skip quadtree == | ||
+ | Будем для каждого интересного квадрата на каждом уровне хранить указатели на тот же квадрат уровнем ниже и уровнем выше (если есть). | ||
+ | |||
+ | Локализация выполняется аналогично сжатому квадродереву. Сначала локализуемся в квадродереве наибольшего уровня, начиная с его корня. Затем локализуемся в квадродереве уровня ниже, начиная уже не с корня, а с того квадрата, который нашли на прошлом уровне. И так далее, пока не дойдём до дна. | ||
+ | |||
+ | Для добавления сначала надо локализоваться. При этом мы локализуемся сразу на всех уровнях. Дальше добавляемся в нулевой уровень, затем с вероятностью <tex>p</tex> добавляемся на уровень выше и так далее до первого недобавления. При этом количество уровней должно увеличиться максимум на 1. | ||
+ | |||
+ | Удаление совсем просто: локализуемся, удаляем со всех уровней, на которых есть. | ||
+ | |||
+ | == Время работы == | ||
+ | == Источник == | ||
+ | http://arxiv.org/pdf/cs.cg/0507049.pdf |
Версия 21:20, 6 января 2014
Описание
Skip quadtree — как skip list, только вместо list'а quadtree. Поэтому желательно знать, что такое skip list, и необходимо знать, что такое сжатое квадродерево. В данной статье будет рассматриваться только рандомизированая версия этой структуры, потому что больше и не нужно, кажется.
The randomized skip quadtree — последовательность сжатых квадродеревьев над последовательностью подмножеств некоего исходного множества интересный в , то он интересный и в .
. , в каждый элемент из входит с вероятностью . The randomized skip quadtree состоит из последовательности , где — сжатое квадродерево над множеством . Будем называть эти квадродеревья уровнями, при этом нулевой уровень содержит в точности точки из . Заметим, что если какой-то квадратОперации над skip quadtree
Будем для каждого интересного квадрата на каждом уровне хранить указатели на тот же квадрат уровнем ниже и уровнем выше (если есть).
Локализация выполняется аналогично сжатому квадродереву. Сначала локализуемся в квадродереве наибольшего уровня, начиная с его корня. Затем локализуемся в квадродереве уровня ниже, начиная уже не с корня, а с того квадрата, который нашли на прошлом уровне. И так далее, пока не дойдём до дна.
Для добавления сначала надо локализоваться. При этом мы локализуемся сразу на всех уровнях. Дальше добавляемся в нулевой уровень, затем с вероятностью
добавляемся на уровень выше и так далее до первого недобавления. При этом количество уровней должно увеличиться максимум на 1.Удаление совсем просто: локализуемся, удаляем со всех уровней, на которых есть.