Сортирующие сети для квадратичных сортировок — различия между версиями
Timur (обсуждение | вклад) |
Timur (обсуждение | вклад) |
||
Строка 32: | Строка 32: | ||
Пусть <tex> S(n) = 2n - 3 </tex> — количество слоев в сети сортировки. | Пусть <tex> S(n) = 2n - 3 </tex> — количество слоев в сети сортировки. | ||
− | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> дополнительных компараторов(<tex>[1:2]\dots[n - 1:n]</tex> или <tex>[n - 1:n]\dots[1:2]</tex>, т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что <tex>n - 1</tex> компаратор входят в уже существующие слои, но тогда один компаратор из предыдущей сортирующий сети и один из добавленных не вносят вклад в количество слоев. Тогда видно, что количество слоев увеличилось на <tex> 2 = S(n + 1) - S(n) </tex>, т.е. наш переход выполняется и наша формула верна. Что и требовалось доказать. | + | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> дополнительных компараторов (<tex>[1:2][2:3]\dots[n - 1:n]</tex> или <tex>[n - 1:n][n - 2:n - 1]\dots[1:2]</tex>, т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что <tex>n - 1</tex> компаратор входят в уже существующие слои (<tex>[2:3][3:4]\dots[n - 1:n] </tex> или <tex>[n - 1:n][n - 2:n - 3]\dots[2:3]</tex>), но тогда один компаратор из предыдущей сортирующий сети и один из добавленных не вносят вклад в количество слоев. Тогда видно, что количество слоев увеличилось на <tex> 2 = S(n + 1) - S(n) </tex>, т.е. наш переход выполняется и наша формула верна. Что и требовалось доказать. |
}} | }} | ||
Строка 44: | Строка 44: | ||
Сеть для сортировки выбором выглядит иначе. Будем компаратор "вкладывать" в компаратор, для получения слоев. | Сеть для сортировки выбором выглядит иначе. Будем компаратор "вкладывать" в компаратор, для получения слоев. | ||
− | [[Файл: | + | [[Файл:Choosesortparralel2.png]] |
{{ | {{ | ||
Утверждение | Утверждение | ||
|statement= | |statement= | ||
− | В результирующей сети будет <tex>2n - 3</tex> | + | В результирующей сети будет <tex>2n - 3</tex> слоев, где <tex> n </tex> — количество входов. |
|proof= | |proof= | ||
− | Определим операцию вложения компаратора <tex> [i:j] </tex> в компаратор <tex> [t:s] </tex> | + | Определим операцию вложения компаратора <tex> [i:j] </tex> в компаратор <tex> [t:s] </tex> : разместим компаратор <tex> [i:j] </tex> и <tex> [t:s] </tex> на одном слое, так, что <tex> t < i < j < s </tex>. |
Теперь воспользуемся принципом математической индукции. | Теперь воспользуемся принципом математической индукции. | ||
Строка 63: | Строка 63: | ||
Пусть <tex> S(n) </tex> — количество слоев в сети сортировки с <tex> n </tex> входами. | Пусть <tex> S(n) </tex> — количество слоев в сети сортировки с <tex> n </tex> входами. | ||
− | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> компаратор<tex>\left( [0:1] \dots [0:n]\right) </tex>. Заметим, что в <tex> n - 2 </tex> добавленных компараторов можно вложить <tex> n - 2 </tex> компараторов из предыдущей сети, так, | + | При переходе от сортирующей сети с <tex>n</tex> входами к сети с <tex>n + 1</tex> входами, добавляем <tex> n </tex> компаратор <tex>\left( [0:1] \dots [0:n]\right) </tex>. Заметим, что в <tex> n - 2 </tex> добавленных компараторов можно вложить <tex> n - 2 </tex> компараторов из предыдущей сети, так, вкладывая один компаратор в другой, образуется новый слой, т.е. количество слоев не изменяется. Тогда останется два компаратора: <tex>[0:1], [0:2] </tex> в которые ничего нельзя вложить.Тогда количество слоев изменяется на <tex> 2 = S(n + 1) - S(n) </tex>. Однако, начиная с <tex> n = 4 </tex> можно перенести свободные компараторы и слить их в один слой, но при этом сеть перестает быть сортирующей (при <tex> n = 4 </tex> ошибка будет возникать на векторе <tex> [0,1,0,0] </tex>). Тогда наш переход выполняется и наша формула верна. Что и требовалось доказать. |
}} | }} |
Версия 16:43, 24 мая 2015
Рассмотрим модели сортирующих сетей для квадратичных сортировок.
Содержание
Сортирующие сети с последовательной сортировкой
На один слой будем устанавливать только один компаратор. Все последующие сети получаются простым моделированием соответствующих сортировок.
Сортировка пузырьком | Сортировка вставками | Сортировка выбором |
Сортирующие сети с параллельной сортировкой
На один слой устанавливается несколько компараторов.
Сортировка пузырьком и вставками
Заметим, если сжать последовательные сортирующие сети пузырьком и вставками, то результат будет одним и тем же. Это видно из симметрии расположения компараторов на картинках выше.
Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Докажем данное утверждение по принципу математической индукции. База индукции: При . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется.Шаг индукции: Пусть При переходе от сортирующей сети с — количество слоев в сети сортировки. входами к сети с входами, добавляем дополнительных компараторов ( или , т.к. возможны две стратегии добавления). В полученной "треугольной" сети можно заметить, что компаратор входят в уже существующие слои ( или ), но тогда один компаратор из предыдущей сортирующий сети и один из добавленных не вносят вклад в количество слоев. Тогда видно, что количество слоев увеличилось на , т.е. наш переход выполняется и наша формула верна. Что и требовалось доказать. |
Сортирующая сеть для
:Сортировка выбором
Сеть для сортировки выбором выглядит иначе. Будем компаратор "вкладывать" в компаратор, для получения слоев.
Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Определим операцию вложения компаратора в компаратор : разместим компаратор и на одном слое, так, что .Теперь воспользуемся принципом математической индукции. База индукции: . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется. Шаг индукции: Пусть При переходе от сортирующей сети с — количество слоев в сети сортировки с входами. входами к сети с входами, добавляем компаратор . Заметим, что в добавленных компараторов можно вложить компараторов из предыдущей сети, так, вкладывая один компаратор в другой, образуется новый слой, т.е. количество слоев не изменяется. Тогда останется два компаратора: в которые ничего нельзя вложить.Тогда количество слоев изменяется на . Однако, начиная с можно перенести свободные компараторы и слить их в один слой, но при этом сеть перестает быть сортирующей (при ошибка будет возникать на векторе ). Тогда наш переход выполняется и наша формула верна. Что и требовалось доказать. |
Пример правильной и ошибочной сети для
См.также
Источники информации
- Дональд Э. Кнут. Искусство программирования. Том 3. Сортировка и Поиск. стр. 238— ISBN 0-201-89685-0
- Кормен, Томас Х.,Рональд Л., Штайн, Клифорд. Глава 27. Сортирующие сети // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-e издание. — М.: «Вильямс», 2005. — С. 799 - 822. — ISBN 5-8459-0857-4.
- Википедия — Сети сортировки