Участник:Dominica — различия между версиями
Dominica (обсуждение | вклад) |
Dominica (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Задача | {{Задача | ||
|definition= Есть один станок и <tex>n</tex> работ. Для каждой работы заданы время выполнения <tex> p_i,</tex> дедлаин <tex>d_i</tex> и стоимось выполнения этой работы <tex>w_i \geqslant 0</tex>. | |definition= Есть один станок и <tex>n</tex> работ. Для каждой работы заданы время выполнения <tex> p_i,</tex> дедлаин <tex>d_i</tex> и стоимось выполнения этой работы <tex>w_i \geqslant 0</tex>. | ||
− | + | Необходим минимизировать <tex>\sum w_i U_i</tex>. | |
}} | }} | ||
==Решение== | ==Решение== | ||
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]]. | Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]]. | ||
− | Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/ | + | Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/. |
Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает <tex>t</tex>. | Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает <tex>t</tex>. | ||
Если <tex>0 \leqslant t \leqslant d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>. Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем <tex> d_j \geqslant \ldots \geqslant d_1 </tex>, будут выполнены с опозданием. | Если <tex>0 \leqslant t \leqslant d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>. Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем <tex> d_j \geqslant \ldots \geqslant d_1 </tex>, будут выполнены с опозданием. |
Версия 07:42, 4 июня 2016
Задача: |
Есть один станок и | работ. Для каждой работы заданы время выполнения дедлаин и стоимось выполнения этой работы . Необходим минимизировать .
Содержание
Решение
Применим для решения данной задачи динамическое программирование. Обозначим /. Для всех и будем рассчитывать — значение целевой функции при условии, что были рассмотрены первые работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает . Если и работа успевает выполниться вовремя в расписании, соответствующем , то , иначе . Если , то , поскольку все работы с номерами , законченные позже, чем , будут выполнены с опозданием. Отсюда, получим соотношение:
При этом,
при и при .Ответом на задачу будет
.Приведенный ниже алгоритм вычисляет
для и . За обозначим самое большое из времен выполнения заданий.отсортиртировать работы по неубыванию времен дедлайнов= for to for to F_j(t) = \infty for to F_0(t) = 0 for to for to if else for to
Время работы данного алгоритма —
. Для того, чтобы найти само расписание, по доказанной ниже лемме, нам достаточно найти множество работ, которые будут выполнены с опозданием. Это может быть сделано следующим способом:t = d_n L = \varnothing fordownto if </tex> else
Доказательство корректности и оптимальности
Лемма: |
Пусть все работы отсортированы в порядке неубывания дедлайнов .
Тогда существует оптимальное расписание вида , такое, что — номера работ, которые успеют выполниться вовремя, а — номера просроченных работ. |
Доказательство: |
Пусть у нас есть некоторое оптимальное раписание . Получим необходимое нам расписание путем переставления некоторых работ.
|
См. также
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 26 - 28