264
правки
Изменения
→Решение
==Решение==
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/.Для всех <tex>t = 0, 1, \ldots, T </tex> и <tex>j = 1, \ldots, n</tex> будем рассчитывать <tex>F_j(t)</tex> {{---}} значение целевой функции , при условии, что были рассмотрены первые <tex>j</tex> работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает времени <tex>t</tex>.#Если <tex>0 \leqslant t \leqslant d_j </tex> и работа <tex>j</tex> успевает выполниться вовремя в расписании, соответствующем <tex>F_j(t)</tex>, то <tex>F_j(t) = F_{j- 1}(t - p_j)</tex>, иначе <tex>F_j(t) = F_{j- 1}(t) + w_i</tex>. #Если <tex>t > d_j</tex>, то <tex>F_j(t) = F_{j}(d_j)</tex>, поскольку все работы с номерами <tex>j = 1, \ldots, j</tex>, законченные позже, чем <tex> d_j \geqslant \ldots \geqslant d_1 </tex>, будут выполнены с опозданием.
Отсюда, получим соотношение:
<p>
</tex>
</p>
Ответом на задачу будет <tex>F_n(d_n)</tex>.
Время работы данного алгоритма {{---}} <tex>O(n \sum\limits_{i=1}^n p_i)</tex>.
Для того, чтобы найти само расписание, по доказанной ниже лемме, нам достаточно найти множество работ, которые будут выполнены с опозданием. Это может быть сделано следующим способом:
t = d_n