Метрическое пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (minor fixes)
Строка 2: Строка 2:
 
==Метрика и метрическое пространство==
 
==Метрика и метрическое пространство==
  
Пусть X — абстрактное [[Множества|множество]].
+
Пусть <tex>X</tex> {{---}} абстрактное [[Множества|множество]].
  
<tex> X \times X = \{ (x_1, x_2): x_i \in X \} </tex> &mdash; прямое произведение множества X на себя
+
<tex> X \times X = \{ (x_1, x_2): x_i \in X \} </tex> {{---}} прямое произведение множества <tex>X</tex> на себя
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Отображение <tex> \rho : X \times X \rightarrow \mathbb{R^+} </tex> &mdash; называется '''метрикой''' на X, если выполняются аксиомы
+
Отображение <tex> \rho : X \times X \rightarrow \mathbb{R^+} </tex> {{---}} называется '''метрикой''' на <tex>X</tex>, если выполняются аксиомы
 
# <tex> \rho (x, y) \ge 0 ;\ \rho (x, y) = 0  \iff x = y </tex>
 
# <tex> \rho (x, y) \ge 0 ;\ \rho (x, y) = 0  \iff x = y </tex>
 
# <tex> \rho (x, y) = \rho (y, x) </tex>  
 
# <tex> \rho (x, y) = \rho (y, x) </tex>  
# <tex> \rho (x, y) \le \rho (x, z) + \rho (z, y) </tex> &mdash; неравенство треугольника
+
# <tex> \rho (x, y) \le \rho (x, z) + \rho (z, y) </tex> {{---}} неравенство треугольника
 
}}
 
}}
  
Если на X определена метрика, то пара <tex>(X, \rho)</tex> называется '''метрическим пространством''', аббревиатура &mdash; '''МП'''.
+
Если на <tex>X</tex> определена метрика, то пара <tex>(X, \rho)</tex> называется ''метрическим пространством'', аббревиатура {{---}} ''МП''.
  
 
=== Примеры ===
 
=== Примеры ===
Строка 20: Строка 20:
 
Числовая ось: <tex> X = \mathbb{R}; x, y \in X \Rightarrow \rho (x, y) = |x - y| </tex>
 
Числовая ось: <tex> X = \mathbb{R}; x, y \in X \Rightarrow \rho (x, y) = |x - y| </tex>
  
<tex> X = R^n = \underbrace{R \times R \times \dots \times R}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) </tex>
+
<tex> X = \mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) </tex>
 
#<tex> \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| </tex>
 
#<tex> \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| </tex>
 
#<tex> \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| </tex>
 
#<tex> \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| </tex>
Строка 38: Строка 38:
 
=== Пример ===
 
=== Пример ===
  
<tex> X = R: V_r(a) = (a - r; a + r) </tex>
+
<tex> X = \mathbb{R}: V_r(a) = (a - r; a + r) </tex>
  
 
=== Свойства шаров ===
 
=== Свойства шаров ===
Строка 45: Строка 45:
 
Основное свойство шаров
 
Основное свойство шаров
 
|statement=
 
|statement=
Пусть <tex> b \in V_{r1}(a_1) \cap V_{r2}(a_2)</tex>. Тогда <tex> \exists r > 0:\ V_r(b) \subset \ V_{r1}(a_1) \cap V_{r2}(a_2)</tex> <br \>
+
Пусть <tex> b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex>. Тогда <tex> \exists r > 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)</tex> <br \>
  
 
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении.
 
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении.
 
|proof=
 
|proof=
  
Замечание: для X = R это очевидно(переcечение двух интервалов есть интервал).
+
Замечание: для <tex>X = \mathbb{R}</tex> это очевидно (переcечение двух интервалов есть интервал).
  
 
: Пусть <tex> y \in V_{r}(b)</tex>
 
: Пусть <tex> y \in V_{r}(b)</tex>
 
: <tex> \rho (b, a_j) < r_j, j = 1,2 </tex>
 
: <tex> \rho (b, a_j) < r_j, j = 1,2 </tex>
: <tex> \exists r > 0: \rho (y, b) < r \Rightarrow  \rho (y, a_j) < r_j, j = 1,2.</tex>
+
: <tex> \exists r > 0: \rho (y, b) < r \Rightarrow  \rho (y, a_j) < r_j, j = \overline{1,2}.</tex>
 
# <tex> \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) < r_1 \Rightarrow \rho (y, b) < r_1 - \rho(b, a_1) = d_1,\ d_1 > 0 </tex>
 
# <tex> \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) < r_1 \Rightarrow \rho (y, b) < r_1 - \rho(b, a_1) = d_1,\ d_1 > 0 </tex>
 
# <tex> \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) < r_2 \Rightarrow \rho (y, b) < r_2 - \rho(b, a_2) = d_2,\ d_2 > 0 </tex>
 
# <tex> \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) < r_2 \Rightarrow \rho (y, b) < r_2 - \rho(b, a_2) = d_2,\ d_2 > 0 </tex>
: <tex> r = min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара  
+
: <tex> r = \min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара  
 
}}
 
}}
  
Строка 66: Строка 66:
 
Множество <tex> G \subset X </tex> называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
 
Множество <tex> G \subset X </tex> называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
 
: <tex> \tau </tex> &mdash; класс открытых множеств.  
 
: <tex> \tau </tex> &mdash; класс открытых множеств.  
: <tex> \tau </tex> = { G &mdash; открытые в МП <tex>(X, \rho)</tex> }
+
: <tex> \tau = \{ G </tex> {{---}} открытые в МП <tex>(X, \rho) \}</tex>
 
}}
 
}}
  
Строка 78: Строка 78:
 
: <tex> G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} </tex>
 
: <tex> G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} </tex>
 
: <tex> G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) </tex>
 
: <tex> G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) </tex>
: По основному свойству шаров : <tex> b \in V_\alpha \cap V_\beta \Rightarrow \exists V(b) \subset V_\alpha \cap V_\beta </tex>
+
: По основному свойству шаров: <tex> b \in V_\alpha \cap V_\beta \Rightarrow \exists V(b) \subset V_\alpha \cap V_\beta </tex>
 
: Следовательно <tex> V_{\alpha} \cap V_{\beta} </tex> {{---}} объединение открытых шаров <tex> \Rightarrow G_1 \cap G_2 </tex> {{---}} тоже объединение открытых шаров <tex> \Rightarrow G_1 \cap G_2 \in \tau</tex>  по 2 свойству.
 
: Следовательно <tex> V_{\alpha} \cap V_{\beta} </tex> {{---}} объединение открытых шаров <tex> \Rightarrow G_1 \cap G_2 </tex> {{---}} тоже объединение открытых шаров <tex> \Rightarrow G_1 \cap G_2 \in \tau</tex>  по 2 свойству.
  
Класс <tex> \tau </tex> называется (метрической) топологией на множестве X.
+
Класс <tex> \tau </tex> называется (метрической) топологией на множестве <tex>X</tex>.
  
Если в X выделен класс множеств <tex> \tau </tex>, удовлетворяющий всем трем свойствам, то пара <tex>(X, \tau)</tex> называется '''топологическим пространством'''(ТП). В этом смысле МП {{---}} частный случай ТП.
+
Если в <tex>X</tex> выделен класс множеств <tex> \tau </tex>, удовлетворяющий всем трем свойствам, то пара <tex>(X, \tau)</tex> называется ''топологическим пространством''(ТП). В этом смысле МП {{---}} частный случай ТП.
  
 
== Замкнутые множества ==
 
== Замкнутые множества ==
Строка 113: Строка 113:
 
<tex> x_n \rightarrow x', x_n \rightarrow x'' </tex> в МП<tex>(X, \rho) \Rightarrow x' = x'' </tex>
 
<tex> x_n \rightarrow x', x_n \rightarrow x'' </tex> в МП<tex>(X, \rho) \Rightarrow x' = x'' </tex>
 
|proof=
 
|proof=
<tex> \rho(x', x'') <= \rho(x', x) + \rho(x'', x) \Rightarrow \rho(x', x'') = 0; x' = x'' </tex>
+
<tex> \rho(x', x'') \leq \rho(x', x) + \rho(x'', x) \Rightarrow \rho(x', x'') = 0; x' = x'' </tex>
  
 
На самом деле, этот факт {{---}} свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа:
 
На самом деле, этот факт {{---}} свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа:
Строка 120: Строка 120:
 
# <tex> G_1 \cap G_2 = \varnothing </tex>
 
# <tex> G_1 \cap G_2 = \varnothing </tex>
 
# <tex> a \in G_1; b \in G_2 </tex>  
 
# <tex> a \in G_1; b \in G_2 </tex>  
, то в таком ТП выполнима аксиома отделимости Хаусдорфа.
+
Тогда в таком ТП выполнима аксиома отделимости Хаусдорфа.
  
 
Частный случай на МП:
 
Частный случай на МП:
Строка 132: Строка 132:
 
|statement=
 
|statement=
 
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. <br />
 
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. <br />
F - замкнуто <tex> \Leftrightarrow \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F </tex>
+
F - замкнуто <tex> \iff \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F </tex>
 
|proof=<br />
 
|proof=<br />
 
: Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex>
 
: Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex>

Версия 09:45, 4 декабря 2010

Эта статья находится в разработке!

Метрика и метрическое пространство

Пусть [math]X[/math] — абстрактное множество.

[math] X \times X = \{ (x_1, x_2): x_i \in X \} [/math] — прямое произведение множества [math]X[/math] на себя


Определение:
Отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
  1. [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника


Если на [math]X[/math] определена метрика, то пара [math](X, \rho)[/math] называется метрическим пространством, аббревиатура — МП.

Примеры

Числовая ось: [math] X = \mathbb{R}; x, y \in X \Rightarrow \rho (x, y) = |x - y| [/math]

[math] X = \mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) [/math]

  1. [math] \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| [/math]
  2. [math] \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| [/math]

То есть, одно и то же множество можно по-разному превращать в метрическое пространство.

Открытые шары

Для метрических пространств основное значение имеют открытые шары.


Определение:
Пусть [math] (X, \rho) [/math] — метрическое пространство, пусть [math]\ \ r \in \mathbb{R},\ r \gt 0,\ a \in X [/math], тогда открытый шар радиуса [math]\ r\ [/math] в точке [math]\ a\ [/math] — это множество [math] V_r(a) = \{x \in X| \rho(x, a) \lt r \} [/math]


Пример

[math] X = \mathbb{R}: V_r(a) = (a - r; a + r) [/math]

Свойства шаров

Теорема (Основное свойство шаров):
Пусть [math] b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]. Тогда [math] \exists r \gt 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении.
Доказательство:
[math]\triangleright[/math]

Замечание: для [math]X = \mathbb{R}[/math] это очевидно (переcечение двух интервалов есть интервал).

Пусть [math] y \in V_{r}(b)[/math]
[math] \rho (b, a_j) \lt r_j, j = 1,2 [/math]
[math] \exists r \gt 0: \rho (y, b) \lt r \Rightarrow \rho (y, a_j) \lt r_j, j = \overline{1,2}.[/math]
  1. [math] \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) \lt r_1 \Rightarrow \rho (y, b) \lt r_1 - \rho(b, a_1) = d_1,\ d_1 \gt 0 [/math]
  2. [math] \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) \lt r_2 \Rightarrow \rho (y, b) \lt r_2 - \rho(b, a_2) = d_2,\ d_2 \gt 0 [/math]
[math] r = \min(d_1, d_2) \Rightarrow \rho(y, b) \lt r \Rightarrow y[/math] войдет в оба шара
[math]\triangleleft[/math]

Открытые множества

Определение:
Множество [math] G \subset X [/math] называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
[math] \tau [/math] — класс открытых множеств.
[math] \tau = \{ G [/math] — открытые в МП [math](X, \rho) \}[/math]


Свойства открытых множеств

  1. [math] X, \varnothing \in \tau [/math] — все пространство и пустое множество открыты
  2. [math] G_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup\limits_{\alpha \in A} \in \tau [/math] — очевидно
  3. [math] G_1 \dots G_n \in \tau \Rightarrow \bigcap\limits_{j = 1}^n G_j \in \tau [/math]

Доказательство свойства 3:

[math] G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} [/math]
[math] G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) [/math]
По основному свойству шаров: [math] b \in V_\alpha \cap V_\beta \Rightarrow \exists V(b) \subset V_\alpha \cap V_\beta [/math]
Следовательно [math] V_{\alpha} \cap V_{\beta} [/math] — объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 [/math] — тоже объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 \in \tau[/math] по 2 свойству.

Класс [math] \tau [/math] называется (метрической) топологией на множестве [math]X[/math].

Если в [math]X[/math] выделен класс множеств [math] \tau [/math], удовлетворяющий всем трем свойствам, то пара [math](X, \tau)[/math] называется топологическим пространством(ТП). В этом смысле МП — частный случай ТП.

Замкнутые множества

Множество F называется замкнутым в МП[math](X, \rho)[/math], если [math] \overline F = X \backslash F [/math] - открыто.

Применяя закон де Моргана, видим что класс открытых множеств [math] \tau [/math] двойственен классу замкнутых множеств.

Свойства замкнутых множеств

  1. [math] X, \varnothing [/math] — замкнуты
  2. Если [math]\ F_{\alpha} [/math] — замкнуто [math]\forall \alpha \in A [/math], то [math]\bigcup\limits_{\alpha \in A} F_{\alpha} [/math] — замкнуто
  3. Если [math]\ F_1 \dots F_n [/math] — замкнуты, то [math] \Rightarrow \bigcap\limits_{j = 1}^n F_j [/math] — замкнуто

Предел в метрическом пространстве

Определение:
[math] x_n \rightarrow x [/math] в МП [math](X, \rho)[/math], если:
  1. [math]\ \lim\limits_{n \rightarrow \infty} \rho(x_n, x) = 0\ [/math] , или
  2. [math]\forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N \Rightarrow \rho(x_n, x) \lt \varepsilon [/math]

[math] V_\varepsilon(x) = \{ y: \rho(y, x) \lt \varepsilon \} [/math]

[math]\lim\limits_{n \rightarrow \infty} x_n = x: \forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N: x_n \in V_\varepsilon(x)[/math]

Теорема (Единственность предела):
[math] x_n \rightarrow x', x_n \rightarrow x'' [/math] в МП[math](X, \rho) \Rightarrow x' = x'' [/math]
Доказательство:
[math]\triangleright[/math]

[math] \rho(x', x'') \leq \rho(x', x) + \rho(x'', x) \Rightarrow \rho(x', x'') = 0; x' = x'' [/math]

На самом деле, этот факт — свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа:

Пусть [math] (X, \tau) [/math] - ТП, тогда если [math] \forall a \ne b: \exists G_1, G_2 \in \tau :[/math]

  1. [math] G_1 \cap G_2 = \varnothing [/math]
  2. [math] a \in G_1; b \in G_2 [/math]

Тогда в таком ТП выполнима аксиома отделимости Хаусдорфа.

Частный случай на МП:

[math] (X, \rho), a \ne b, \rho(b, a) \gt 0: r = \frac 1 3 \rho(a, b); V_r(a) \cap V_r(b) = \varnothing [/math] , ч.т.д.
[math]\triangleleft[/math]

Основное характеристическое свойство замкнутых множеств

Утверждение (В прямую сторону):
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей.
F - замкнуто [math] \iff \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F [/math]
[math]\triangleright[/math]


Пусть [math] x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V [/math]
[math] F \cap G = \varnothing \Rightarrow F \cap V = \varnothing [/math]
[math] x_n \rightarrow x : \forall \varepsilon \gt 0 \, \exists N \, \forall n \gt N : x_n \in V [/math] , что противоречит [math] x_n \in F (F \cap V = \varnothing) \Rightarrow x \in F [/math]
[math]\triangleleft[/math]

TODO: утверждение в обратную сторону нифига не понятное и странное и скорее всего неправильно доказано Грусть и печаль. Это полный бред.

Утверждение (В обратную сторону):
Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто.
[math] x \notin F, \exists V : x \in V, V \cap F = \varnothing \Rightarrow \overline F [/math] - открытое, F - замкнутое.щито?
[math]\triangleright[/math]


Допустим, для x шара нет. [math] \Rightarrow \forall V_{\frac 1 n}(x) \cap F \ne \varnothing, x_n \in V_{\frac 1 n}(x) \cap F [/math]
[math] \frac 1 n \rightarrow 0 \Rightarrow \rho(x_n, x) \rightarrow 0 \Rightarrow x \in F [/math] - противоречит условию, ч.т.д.
[math]\triangleleft[/math]