|
|
Строка 146: |
Строка 146: |
| |proof= | | |proof= |
| Рассмотрим <tex> x \notin F </tex>. Пусть <tex> G = \overline F </tex>. Если <tex> G </tex> - открытое, то <tex> F </tex> - замкнутое множество (по определению). | | Рассмотрим <tex> x \notin F </tex>. Пусть <tex> G = \overline F </tex>. Если <tex> G </tex> - открытое, то <tex> F </tex> - замкнутое множество (по определению). |
− | : Тогда каждый <tex> y \notin F </tex> входит в <tex> G </tex> вместе с каким-то открытым шаром (по определению - <tex> G = \bigcup\limits_i V_i </tex> - открытое множество). При этом, <tex> F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing </tex>. | + | : Тогда каждый <tex> y \notin F </tex> входит в <tex> G </tex> вместе с каким-то открытым шаром (по определению - <tex> G = \bigcup\limits_i V_i </tex> - открытое множество), причём, всегда можно выделить такой шар, что <tex> y </tex> является его центром (достаточно положить <tex> r' = r - \rho (x, y) </tex>, где <tex> x </tex> - центр шара, в который входит <tex> y </tex>, а <tex> r </tex> - его радиус). При этом, <tex> F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing </tex>. |
− | : Предположим, что это не так, и для какого-то <tex> x \notin F </tex> не найдется такого открытого шара <tex> V(x): x \in V(x)_r , \, V(x)_r \cap F = \varnothing </tex> | + | : Предположим, что это не так, и для какого-то <tex> x \notin F </tex> не найдется такого открытого шара <tex> V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing </tex> |
− | : Запишем это формально: <tex> \forall r: F \cap V(x)_r \neq \varnothing</tex>. | + | : Запишем это формально: <tex> \forall r: F \cap V_r(x) \neq \varnothing</tex>. |
| : Определим следующие последовательности: | | : Определим следующие последовательности: |
− | : <tex> r_n = \frac 1n </tex>, <tex> \{ x_n \} : x_n \in (F \cap V(x)_{r_n}) </tex>. | + | : <tex> r_n = \frac 1n </tex>, <tex> \{ x_n \} : x_n \in (F \cap V_{r_n}(x)) </tex>. |
| : <tex> r_n \rightarrow 0 \Rightarrow x_n \rightarrow x </tex>. | | : <tex> r_n \rightarrow 0 \Rightarrow x_n \rightarrow x </tex>. |
| : Каждый <tex> x_n \in F, x_n \rightarrow x \Rightarrow \{ x_n \} </tex> - сходящаяся последовательность в <tex> F </tex> | | : Каждый <tex> x_n \in F, x_n \rightarrow x \Rightarrow \{ x_n \} </tex> - сходящаяся последовательность в <tex> F </tex> |
Версия 10:35, 7 декабря 2010
Эта статья находится в разработке!
Метрика и метрическое пространство
Пусть [math]X[/math] — абстрактное множество.
[math] X \times X = \{ (x_1, x_2): x_i \in X \} [/math] — прямое произведение множества [math]X[/math] на себя
Определение: |
Отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
- [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
- [math] \rho (x, y) = \rho (y, x) [/math]
- [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника
|
Если на [math]X[/math] определена метрика, то пара [math](X, \rho)[/math] называется метрическим пространством, аббревиатура — МП.
Примеры
Числовая ось: [math] X = \mathbb{R}; x, y \in X \Rightarrow \rho (x, y) = |x - y| [/math]
[math] X = \mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) [/math]
- [math] \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| [/math]
- [math] \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| [/math]
То есть, одно и то же множество можно по-разному превращать в метрическое пространство.
Открытые шары
Для метрических пространств основное значение имеют открытые шары.
Определение: |
Пусть [math] (X, \rho) [/math] — метрическое пространство, пусть [math]\ \ r \in \mathbb{R},\ r \gt 0,\ a \in X [/math], тогда открытый шар радиуса
[math]\ r\ [/math] в точке [math]\ a\ [/math] — это множество [math] V_r(a) = \{x \in X| \rho(x, a) \lt r \} [/math] |
Пример
[math] X = \mathbb{R}: V_r(a) = (a - r; a + r) [/math]
Свойства шаров
Теорема (Основное свойство шаров): |
Пусть [math] b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]. Тогда [math] \exists r \gt 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении. |
Доказательство: |
[math]\triangleright[/math] |
Замечание: для [math]X = \mathbb{R}[/math] это очевидно (переcечение двух интервалов есть интервал).
- Пусть [math] y \in V_{r}(b)[/math]
- [math] \rho (b, a_j) \lt r_j, j = 1,2 [/math]
- [math] \exists r \gt 0: \rho (y, b) \lt r \Rightarrow \rho (y, a_j) \lt r_j, j = \overline{1,2}.[/math]
- [math] \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) \lt r_1 \Rightarrow \rho (y, b) \lt r_1 - \rho(b, a_1) = d_1,\ d_1 \gt 0 [/math]
- [math] \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) \lt r_2 \Rightarrow \rho (y, b) \lt r_2 - \rho(b, a_2) = d_2,\ d_2 \gt 0 [/math]
- [math] r = \min(d_1, d_2) \Rightarrow \rho(y, b) \lt r \Rightarrow y[/math] войдет в оба шара
|
[math]\triangleleft[/math] |
Открытые множества
Определение: |
Множество [math] G \subset X [/math] называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
- [math] \tau [/math] — класс открытых множеств.
- [math] \tau = \{ G [/math] — открытые в МП [math](X, \rho) \}[/math]
|
Свойства открытых множеств
- [math] X, \varnothing \in \tau [/math] — все пространство и пустое множество открыты
- [math] G_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup\limits_{\alpha \in A} \in \tau [/math] — очевидно
- [math] G_1 \dots G_n \in \tau \Rightarrow \bigcap\limits_{j = 1}^n G_j \in \tau [/math]
Доказательство свойства 3:
- [math] G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} [/math]
- [math] G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) [/math]
- По основному свойству шаров: [math] b \in V_\alpha \cap V_\beta \Rightarrow \exists V(b) \subset V_\alpha \cap V_\beta [/math]
- Следовательно [math] V_{\alpha} \cap V_{\beta} [/math] — объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 [/math] — тоже объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 \in \tau[/math] по 2 свойству.
Класс [math] \tau [/math] называется (метрической) топологией на множестве [math]X[/math].
Если в [math]X[/math] выделен класс множеств [math] \tau [/math], удовлетворяющий всем трем свойствам, то пара [math](X, \tau)[/math] называется топологическим пространством(ТП). В этом смысле МП — частный случай ТП.
Замкнутые множества
Множество F называется замкнутым в МП[math](X, \rho)[/math], если [math] \overline F = X \backslash F [/math] - открыто.
Применяя закон де Моргана, видим что класс открытых множеств [math] \tau [/math] двойственен классу замкнутых множеств.
Свойства замкнутых множеств
- [math] X, \varnothing [/math] — замкнуты
- Если [math]\ F_{\alpha} [/math] — замкнуто [math]\forall \alpha \in A [/math], то [math]\bigcup\limits_{\alpha \in A} F_{\alpha} [/math] — замкнуто
- Если [math]\ F_1 \dots F_n [/math] — замкнуты, то [math] \Rightarrow \bigcap\limits_{j = 1}^n F_j [/math] — замкнуто
Предел в метрическом пространстве
Определение: |
[math] x_n \rightarrow x [/math] в МП [math](X, \rho)[/math], если:
- [math]\ \lim\limits_{n \rightarrow \infty} \rho(x_n, x) = 0\ [/math] , или
- [math]\forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N \Rightarrow \rho(x_n, x) \lt \varepsilon [/math]
|
[math] V_\varepsilon(x) = \{ y: \rho(y, x) \lt \varepsilon \} [/math]
[math]\lim\limits_{n \rightarrow \infty} x_n = x: \forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N: x_n \in V_\varepsilon(x)[/math]
Теорема (Единственность предела): |
[math] x_n \rightarrow x', x_n \rightarrow x'' [/math] в МП[math](X, \rho) \Rightarrow x' = x'' [/math] |
Доказательство: |
[math]\triangleright[/math] |
[math] \rho(x', x'') \leq \rho(x', x) + \rho(x'', x) \Rightarrow \rho(x', x'') = 0; x' = x'' [/math]
На самом деле, этот факт — свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа:
Пусть [math] (X, \tau) [/math] - ТП, тогда если [math] \forall a \ne b: \exists G_1, G_2 \in \tau :[/math]
- [math] G_1 \cap G_2 = \varnothing [/math]
- [math] a \in G_1; b \in G_2 [/math]
Тогда в таком ТП выполнима аксиома отделимости Хаусдорфа.
Частный случай на МП:
- [math] (X, \rho), a \ne b, \rho(b, a) \gt 0: r = \frac 1 3 \rho(a, b); V_r(a) \cap V_r(b) = \varnothing [/math] , ч.т.д.
|
[math]\triangleleft[/math] |
Основное характеристическое свойство замкнутых множеств
Утверждение (В прямую сторону): |
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей.
F - замкнуто [math] \iff \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F [/math] |
[math]\triangleright[/math] |
- Пусть [math] x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V [/math]
- [math] F \cap G = \varnothing \Rightarrow F \cap V = \varnothing [/math]
- [math] x_n \rightarrow x : \forall \varepsilon \gt 0 \, \exists N \, \forall n \gt N : x_n \in V [/math] , что противоречит [math] x_n \in F (F \cap V = \varnothing) \Rightarrow x \in F [/math]
|
[math]\triangleleft[/math] |
TODO: Написал вроде бы понятное доказательство в обратную сторону. Если есть какие-либо косяки - пишите в обсуждение.
Утверждение (В обратную сторону): |
: Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. |
[math]\triangleright[/math] |
Рассмотрим [math] x \notin F [/math]. Пусть [math] G = \overline F [/math]. Если [math] G [/math] - открытое, то [math] F [/math] - замкнутое множество (по определению).
- Тогда каждый [math] y \notin F [/math] входит в [math] G [/math] вместе с каким-то открытым шаром (по определению - [math] G = \bigcup\limits_i V_i [/math] - открытое множество), причём, всегда можно выделить такой шар, что [math] y [/math] является его центром (достаточно положить [math] r' = r - \rho (x, y) [/math], где [math] x [/math] - центр шара, в который входит [math] y [/math], а [math] r [/math] - его радиус). При этом, [math] F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing [/math].
- Предположим, что это не так, и для какого-то [math] x \notin F [/math] не найдется такого открытого шара [math] V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing [/math]
- Запишем это формально: [math] \forall r: F \cap V_r(x) \neq \varnothing[/math].
- Определим следующие последовательности:
- [math] r_n = \frac 1n [/math], [math] \{ x_n \} : x_n \in (F \cap V_{r_n}(x)) [/math].
- [math] r_n \rightarrow 0 \Rightarrow x_n \rightarrow x [/math].
- Каждый [math] x_n \in F, x_n \rightarrow x \Rightarrow \{ x_n \} [/math] - сходящаяся последовательность в [math] F [/math]
- Но, по предположению, [math] F [/math] содержит в себе пределы всех своих сходящихся последовательностей, а значит [math] x \in F [/math].
- Получили противоречие, значит [math] G = \overline F [/math] - открытое множество, а значит [math] F [/math] - замкнуто.
|
[math]\triangleleft[/math] |