Метрическое пространство — различия между версиями
м |
м (release) |
||
Строка 1: | Строка 1: | ||
− | + | [[Категория:Математический анализ 1 курс]] | |
==Метрика и метрическое пространство== | ==Метрика и метрическое пространство== | ||
Строка 49: | Строка 49: | ||
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении. | Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении. | ||
|proof= | |proof= | ||
+ | Замечание: для <tex>X = \mathbb{R}</tex> это очевидно (переcечение двух интервалов есть интервал). | ||
− | + | Пусть <tex> y \in V_{r}(b)</tex> | |
− | + | Для <tex> V_{r_1} </tex> | |
− | : <tex> \rho (b, | + | : <tex> \rho (b, a_1) < r_1</tex> |
− | : <tex> \exists r > 0: \rho (y, b) < r \Rightarrow \rho (y, | + | : <tex> \exists r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_1) < r_1 </tex> |
− | + | : <tex> \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) < r_1 \Rightarrow \rho (y, b) < r_1 - \rho(b, a_1) = d_1,\ d_1 > 0 </tex> | |
− | + | Для <tex> V_{r_2} </tex> | |
− | + | : <tex> \rho (b, a_2) < r_2</tex> | |
+ | : <tex> \exists r > 0: \rho (y, b) < r \Rightarrow \rho (y, a_2) < r_2 </tex> | ||
+ | : <tex> \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) < r_2 \Rightarrow \rho (y, b) < r_2 - \rho(b, a_2) = d_2,\ d_2 > 0 </tex> | ||
+ | <tex> r = \min(d_1, d_2) \Rightarrow \rho(y, b) < r \Rightarrow y</tex> войдет в оба шара | ||
}} | }} | ||
Строка 101: | Строка 105: | ||
<tex> x_n \rightarrow x </tex> в МП <tex>(X, \rho)</tex>, если: | <tex> x_n \rightarrow x </tex> в МП <tex>(X, \rho)</tex>, если: | ||
# <tex>\ \lim\limits_{n \rightarrow \infty} \rho(x_n, x) = 0\ </tex> , или | # <tex>\ \lim\limits_{n \rightarrow \infty} \rho(x_n, x) = 0\ </tex> , или | ||
− | #<tex>\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N \Rightarrow \rho(x_n, x) < \varepsilon </tex> | + | # <tex>\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N \Rightarrow \rho(x_n, x) < \varepsilon </tex> |
+ | : или | ||
+ | : <tex>\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N: x_n \in V_\varepsilon(x)</tex>, где <tex> V_\varepsilon(x) = \{ y: \rho(y, x) < \varepsilon \} </tex> | ||
}} | }} | ||
− | |||
− | |||
− | |||
{{Теорема | {{Теорема | ||
Строка 131: | Строка 134: | ||
В прямую сторону | В прямую сторону | ||
|statement= | |statement= | ||
− | F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. <br | + | F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. <br> |
− | F - замкнуто <tex> \ | + | F - замкнуто <tex> \Longrightarrow \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F </tex> |
|proof=<br /> | |proof=<br /> | ||
: Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex> | : Пусть <tex> x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V </tex> | ||
Строка 138: | Строка 141: | ||
: <tex> x_n \rightarrow x : \forall \varepsilon > 0 \, \exists N \, \forall n > N : x_n \in V </tex> , что противоречит <tex> x_n \in F (F \cap V = \varnothing) \Rightarrow x \in F </tex> | : <tex> x_n \rightarrow x : \forall \varepsilon > 0 \, \exists N \, \forall n > N : x_n \in V </tex> , что противоречит <tex> x_n \in F (F \cap V = \varnothing) \Rightarrow x \in F </tex> | ||
}} | }} | ||
− | + | ||
{{Утверждение | {{Утверждение | ||
|about= | |about= | ||
В обратную сторону | В обратную сторону | ||
|statement= | |statement= | ||
− | Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. | + | Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. <br> |
+ | Если <tex>\forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F \Longrightarrow </tex>F - замкнуто | ||
|proof= | |proof= | ||
Рассмотрим <tex> x \notin F </tex>. Пусть <tex> G = \overline F </tex>. Если <tex> G </tex> - открытое, то <tex> F </tex> - замкнутое множество (по определению). | Рассмотрим <tex> x \notin F </tex>. Пусть <tex> G = \overline F </tex>. Если <tex> G </tex> - открытое, то <tex> F </tex> - замкнутое множество (по определению). | ||
− | + | ||
− | + | Тогда каждый <tex> y \notin F </tex> входит в <tex> G </tex> вместе с каким-то открытым шаром (по определению - <tex> G = \bigcup\limits_i V_i </tex> - открытое множество), причём, всегда можно выделить такой шар, что <tex> y </tex> является его центром (достаточно положить <tex> r' = r - \rho (x, y) </tex>, где <tex> x </tex> - центр шара, в который входит <tex> y </tex>, а <tex> r </tex> - его радиус). При этом, <tex> F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing </tex>. | |
− | + | ||
− | + | Предположим, что это не так, и для какого-то <tex> x \notin F </tex> не найдется такого открытого шара <tex> V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing </tex> | |
+ | |||
+ | Запишем это формально: <tex> \forall r: F \cap V_r(x) \neq \varnothing</tex>. | ||
+ | |||
+ | Определим следующие последовательности: | ||
: <tex> r_n = \frac 1n </tex>, <tex> \{ x_n \} : x_n \in (F \cap V_{r_n}(x)) </tex>. | : <tex> r_n = \frac 1n </tex>, <tex> \{ x_n \} : x_n \in (F \cap V_{r_n}(x)) </tex>. | ||
: <tex> r_n \rightarrow 0 \Rightarrow x_n \rightarrow x </tex>. | : <tex> r_n \rightarrow 0 \Rightarrow x_n \rightarrow x </tex>. | ||
− | + | Каждый <tex> x_n \in F, x_n \rightarrow x \Rightarrow \{ x_n \} </tex> - сходящаяся последовательность в <tex> F </tex>. Но, по предположению, <tex> F </tex> содержит в себе пределы всех своих сходящихся последовательностей, а значит <tex> x \in F </tex>. Получили противоречие, значит <tex> G = \overline F </tex> - открытое множество, а значит <tex> F </tex> - замкнуто. | |
− | |||
− | |||
}} | }} | ||
− | [ | + | == См. также == |
+ | [http://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D0%B8%D0%BE%D0%BC%D1%8B_%D0%BE%D1%82%D0%B4%D0%B5%D0%BB%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8 Если интересно - аксиомы отделимости] |
Версия 02:14, 16 декабря 2010
Содержание
Метрика и метрическое пространство
Пусть множество.
— абстрактное— прямое произведение множества на себя
Определение: |
Отображение
| — называется метрикой на , если выполняются аксиомы
Если на определена метрика, то пара называется метрическим пространством, аббревиатура — МП.
Примеры
Числовая ось:
То есть, одно и то же множество можно по-разному превращать в метрическое пространство.
Открытые шары
Для метрических пространств основное значение имеют открытые шары.
Определение: |
Пусть | — метрическое пространство, пусть , тогда открытый шар радиуса в точке — это множество
Пример
Свойства шаров
Теорема (Основное свойство шаров): |
Пусть . Тогда Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении. |
Доказательство: |
Замечание: для это очевидно (переcечение двух интервалов есть интервал).Пусть Для Для |
Открытые множества
Определение: |
Множество
| называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
Свойства открытых множеств
- — все пространство и пустое множество открыты
- — очевидно
Доказательство свойства 3:
- По основному свойству шаров:
- Следовательно — объединение открытых шаров — тоже объединение открытых шаров по 2 свойству.
Класс
называется (метрической) топологией на множестве .Если в
выделен класс множеств , удовлетворяющий всем трем свойствам, то пара называется топологическим пространством(ТП). В этом смысле МП — частный случай ТП.Замкнутые множества
Множество F называется замкнутым в МП
, если - открыто.Применяя закон де Моргана, видим что класс открытых множеств
двойственен классу замкнутых множеств.Свойства замкнутых множеств
- — замкнуты
- Если — замкнуто , то — замкнуто
- Если — замкнуты, то — замкнуто
Предел в метрическом пространстве
Определение: |
| в МП , если:
Теорема (Единственность предела): |
в МП |
Доказательство: |
На самом деле, этот факт — свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа: Пусть - ТП, тогда еслиТогда в таком ТП выполнима аксиома отделимости Хаусдорфа. Частный случай на МП:
|
Основное характеристическое свойство замкнутых множеств
Утверждение (В прямую сторону): |
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей. F - замкнуто |
|
Утверждение (В обратную сторону): |
Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто. Если F - замкнуто |
Рассмотрим . Пусть . Если - открытое, то - замкнутое множество (по определению).Тогда каждый входит в вместе с каким-то открытым шаром (по определению - - открытое множество), причём, всегда можно выделить такой шар, что является его центром (достаточно положить , где - центр шара, в который входит , а - его радиус). При этом, .Предположим, что это не так, и для какого-то не найдется такого открытого шараЗапишем это формально: .Определим следующие последовательности:
|