Сеть Бетчера — различия между версиями
(→Источники информации) |
(→Источники информации) |
||
Строка 84: | Строка 84: | ||
<references /> | <references /> | ||
==Источники информации== | ==Источники информации== | ||
− | *[ | + | *[[wikipedia:Bitonic_sorter | Wikipedia {{---}} Bitonic sorter]] |
*Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2005. — С. 808—818. | *Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2005. — С. 808—818. | ||
<!-- TODO: проверить 2007 издание Кормена и написать его --> | <!-- TODO: проверить 2007 издание Кормена и написать его --> |
Версия 23:01, 22 января 2017
Сеть Бетчера (англ. Batcher bitonic mergesort) — сортирующая сеть размером и глубиной , где — количество элементов для сортировки. Её авторство принадлежит Кену Бетчеру[1].
В этой статье будет описана сортирующая сеть для случая когда
— степень двойки ( ).Содержание
Битоническая последовательность
Сначала введем все необходимые понятия для построения сортирующей сети Бетчера.
Определение: |
Битонической последовательностью (англ. bitonic sequence) называется конечный упорядоченный набор (кортеж) из вещественных чисел, в котором они сначала монотонно возрастают, а затем монотонно убывают, или набор, который приводится к такому виду путем циклического сдвига. |
Здесь мы воспользуемся 0-1 принципом и будем рассматривать только нуль-единичные битонические последовательности:
Определение: |
Нуль-единичные битонические последовательности — кортежи из нулей и единиц вида | или для целых , где или обозначает идущих подряд единиц или нулей соответственно.
Приведем несколько примеров нуль-единичной битонической последовательности:
, , , , .Далее будет показано, что битоническую последовательность можно легко получить из двух отсортированных, поэтому если мы найдем способ эффективно её сортировать, то сможем столь же эффективно сливать (объединять) две отсортированные последовательности в одну. На этой операции и основывается принцип работы описываемой в этой статье сети сортировки.
Битонический сортировщик
Построим сеть, которая эффективно сортирует все битонические последовательности — так называемый битонический сортировщик (англ. bitonic sorter).
ПолуфильтрБитонический сортировщик представляет собой каскад так называемых полуфильтров (англ. half-cleaner). Каждый полуфильтр — сеть компараторов единичной глубины, в которой -й входной провод сравнивается со входным проводом с номером , где (количество входов — чётное).
|
Построение битонического сортировщика
Теперь используем полуфильтры для сортировки битонических последовательностей. Как только что было доказано, один полуфильтр разделяет битоническую последовательность на две равные части, одна из которых однородна, а другая сама по себе является битонической последовательностью, причем части расположены в правильном порядке. Тогда мы можем каждую часть снова отправить в полуфильтр вдвое меньшего размера, чем предыдущий. Затем, если нужно, четыре получившихся части снова отправить в полуфильтры и так далее, пока количество проводов в одной части больше
.Так можно построить сеть для числа входов, являющегося степенью двойки. Поскольку каждый вертикальный ряд полуфильтров вдвое сокращает число входов, которые необходимо отсортировать, глубина всей сети равна
, где — число входов. Количество компараторов равно , потому что размер одного полуфильтра на входов — компараторов, а в слое битонического сортировщика находится полуфильтров, где — номер слоя, начиная с единицы.Объединяющая сеть
Битонический сортировщик находит своё применение в конструкции так называемой объединяющей сети.
Определение: |
Объединяющая сеть (англ. merger) — сеть компараторов, объединяющая две отсортированные входные последовательности в одну отсортированную выходную последовательность. |
Построим объединяющую сеть на основе битонического сортировщика. Для этого рассмотрим наши отсортированные входные последовательности:
Отсортированная последовательность имеет вид
для целых . Запишем две входные последовательности как и . Если перевернуть вторую последовательность, получится отсортированная по невозрастанию последовательность . Если теперь записать первую и перевернутую вторую последовательности подряд, получится битоническая последовательность , которую можно отсортировать в битоническом сортировщике с глубиной .Объединяющая сеть является ничем иным как битоническим сортировщиком. Единственное отличие в том, что половина входных проводов расположена в обратном порядке (предполагается, что мы объединяем две сети одинакового размера
). Поэтому первый полуфильтр будет отличаться от остальных — он будет соединять -ый провод не с -ым, а с -ым проводом. Схема объединяющей сети для восьми проводов приведена ниже.Глубина и число компараторов в объединяющей сети очевидно те же, что и в битоническом сортировщике.
Сортирующая сеть
Построение
Теперь, с помощью описанных выше объединяющих сетей мы построим параллельную версию сортировки слиянием.
Пусть мы хотим отсортировать
входов, — целое и . Для этого сначала отсортируем пары проводов, поставив в первом слое компаратор между -ым и -ым проводом для нечетных . Затем с помощью объединяющих сетей параллельно объединим отсортированные пары проводов в отсортированные четверки. Затем объединим отсортированные четверки в отсортированные восьмерки. И так далее, пока на выходе очередной объединяющей сети не будет проводов.Так мы построили сеть, сортирующую любую последовательность из нулей и единиц. А это означает, согласно 0-1 принципу, что она будет сортировать и любой набор чисел.
Точные формулы размера и глубины сети
Оценим глубину этой сортирующей сети. Она состоит из
слоёв объединяющих сетей и каждый слой имеет глубину, зависящую от его номера. В слое с номером ( ) объединяющая сеть имеет глубину , потому как объединяет проводов. Таким образом глубина всей сортирующей сети в точности равна .Оценим размер сети. В объединяющей сети на
входов содержится компараторов. Снова просуммируем формулу по числу объединяющих сетей и получим точную оценку .См. также
Примечания
Источники информации
- Wikipedia — Bitonic sorter
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2005. — С. 808—818.