Пороговая функция — различия между версиями
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Булева функция <tex>f(A_1,A_2, | + | Булева функция <tex>f(A_1,A_2,\ldots,A_n)</tex> называется '''пороговой''' (англ. ''threshold function''), если ее можно представить в виде <tex>f(A_1,A_2,\ldots,A_n) = [\sum\limits_{i=1}^n A_i a_i \geqslant T]</tex>, где <tex>a_i</tex> {{---}} '''вес''' (англ. ''weight'') аргумента <tex>A_i</tex>, а <tex>T</tex> {{---}} '''порог''' (англ. ''threshold'') функции <tex>f</tex>; <tex>a_i, T \in R</tex> |
}} | }} | ||
− | Обычно пороговую функцию записывают в следующим виде: <tex>f = [a_1,a_2,a_3, | + | Обычно пороговую функцию записывают в следующим виде: <tex>f = [a_1,a_2,a_3,\ldots,a_n;T]</tex>. |
== Пример == | == Пример == | ||
Строка 27: | Строка 27: | ||
{{Утверждение | {{Утверждение | ||
|statement=Для всякой пороговой функции справедливо | |statement=Для всякой пороговой функции справедливо | ||
− | :<tex>[a_1,a_2,a_3, | + | :<tex>[a_1,a_2,a_3,\ldots,a_n;T]=[ka_1,ka_2,ka_3,\ldots,ka_n;kT]</tex>, |
где <tex>k</tex> — положительное вещественное число. | где <tex>k</tex> — положительное вещественное число. | ||
|proof=Чтобы убедиться в этом достаточно записать | |proof=Чтобы убедиться в этом достаточно записать | ||
− | : <tex>ka_1 A_1+ka_2 A_2+ | + | : <tex>ka_1 A_1+ka_2 A_2+\ldots+ka_n A_n \geqslant kT</tex> |
− | : <tex>ka_1 A_1+ka_2 A_2+ | + | : <tex>ka_1 A_1+ka_2 A_2+\ldots+ka_n A_n < kT</tex> |
и разделить обе части неравенства на <tex>k</tex>. | и разделить обе части неравенства на <tex>k</tex>. | ||
}} | }} |
Версия 18:12, 27 декабря 2017
Определение: |
Булева функция | называется пороговой (англ. threshold function), если ее можно представить в виде , где — вес (англ. weight) аргумента , а — порог (англ. threshold) функции ;
Обычно пороговую функцию записывают в следующим виде: .
Содержание
Пример
Рассмотрим функцию трёх аргументов
. Согласно этой записи имеем- .
Все наборы значений аргументов
, на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида .- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
Таким образом, заданная функция принимает единичное значение на наборах минимальная форма имеет вид
, , , , . Её- .
Утверждение: |
Для всякой пороговой функции справедливо
|
Чтобы убедиться в этом достаточно записать |
Примеры пороговых функций
Примерами пороговых функций служат функции
и . Представим функцию в виде . Докажем, что это именно пороговая функция, подставив все возможные значения аргументов:- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции
, следовательно — пороговая функция.Функцию
представим в виде . Аналогично докажем, что это пороговая функция:- , то .
- , то .
- , то .
- , то .
Таблица значений совпадает с таблицей истинности функции
, следовательно — пороговая функция.Пример непороговой функции
Утверждение: |
Функция — непороговая. |
Предположим, что | — пороговая функция. При аргументах значение функции равно . Тогда по определению пороговой функции неравенство не должно выполняться. Подставляя значение аргументов, получаем, что . При аргументах и значение функции равно . Тогда по определению выполняется неравенство , подставляя в которое значения соответствующих аргументов, получаем . Отсюда следует, что и . При аргументах значение функции равно 0, следовательно неравенство выполняться не должно, то есть . Но неравенства и при положительных и одновременно выполняться не могут. Получили противоречие, следовательно, функция — непороговая.
Значимость пороговых функций
Пороговые функции алгебры логики представляют интерес в связи с простотой технической реализации, в связи со своими вычислительными возможностями, а также благодаря возможности их обучения. Последнее свойство с успехом применяется на практике при решении плохо формализуемых задач. Пороговые функции применяются в качестве передаточных функций в искусственных нейронах, из которых состоят искусственные нейронные сети. А так как искусственный нейрон полностью характеризуется своей передаточной функцией, то пороговые функции являются математической моделью нейронов.