Список с пропусками — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Вставка элемента)
Строка 62: Строка 62:
 
===Вставка элемента===
 
===Вставка элемента===
 
Для вставки элемента в список с пропусками, нам необходимо выполнить следующие шаги:
 
Для вставки элемента в список с пропусками, нам необходимо выполнить следующие шаги:
# Найти с помощью алгоритма поиска позицию, куда нам надо вставить этот элемент
 
# Вставить наш элемент в нижний уровень списка с пропусками
 
# «Подбросить монетку» и в зависимости от результата протолкнуть элемент на уровень выше
 
# Повторять предыдущий шаг до тех пор, пока у нас «подброс монетки» дает положительный результат
 
  
Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется <tex>\dfrac{n}{2}</tex>, на третьем уровне <tex>\dfrac{n}{4}</tex> и т.д. На уровне <tex>\log{n}</tex> у нас окажется один элемент. Ну и соответственно вероятности попасть элементу на второй уровень — это <tex>\dfrac{1}{2}</tex>, на третий <tex>\dfrac{1}{4}</tex> и т.д. Вероятность попасть на уровень <tex>\log{n}</tex> равна <tex>\dfrac{1}{n}</tex>.
+
# Найти с помощью алгоритма поиска позицию, где мог бы находиться элемент.
 +
# Вставить наш элемент в текущий уровень списка с пропусками
 +
# Подбросить монету.
 +
# Если выпал «Орёл» то перейти на уровень выше и вернуться к шагу <tex>2</tex>
 +
# Иначе закончить операцию вставки
  
Используя монетку с распределением отличным от <tex>\{\dfrac{1}{2}</tex>, <tex>\dfrac{1}{2}\}</tex>, можно влиять на количество элементов на верхних уровнях. Так, например, при использовании монеты с распределением <tex>\{p,q\}</tex>}, математическое ожидание количества элементов на уровне <tex>l</tex> равно <tex dpi=150>n q^l</tex>, каждый уровень будет составлять <tex>q</tex> от предыдущего; время поиска будет равно <tex>O(\dfrac{k}{q} + nq^k)</tex>. Соответственно при честной монетке и <tex>\log(n)</tex> уровней получаем оценку, полученную ранее.
+
Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется <tex>\dfrac{n}{2}</tex>, на третьем уровне <tex>-</tex> <tex>\dfrac{n}{4}</tex> и т.д. На уровне <tex>\log{n}</tex> у нас окажется один элемент. Ну и соответственно вероятности попасть элементу на второй уровень — это <tex>\dfrac{1}{2}</tex>, на третий <tex>\dfrac{1}{4}</tex> и т.д. Вероятность попасть на уровень <tex>\log{n}</tex> равна <tex>\dfrac{1}{n}</tex>.
 +
 
 +
Используя монетку с распределением отличным от <tex>\left\{\dfrac{1}{2}, \ \dfrac{1}{2}\right\}</tex>, можно влиять на количество элементов на верхних уровнях. Так, например, при использовании монеты с распределением <tex>\{p,q\}</tex> математическое ожидание количества элементов на уровне <tex>k</tex> равно <tex dpi=150>n q^k</tex>, на каждом следующем уровне будет в среднем в <tex>q</tex> раз больше элементов. Таким образом, время поиска будет равно <tex>O\left(\dfrac{k}{q} + nq^k\right)</tex>. Соответственно при честной монетке и <tex>\log(n)</tex> уровней получаем оценку, полученную ранее.
 
Для крайних распределений:
 
Для крайних распределений:
 
* <tex>\{0, 1\}</tex> {{---}} <tex>O(k+n)</tex>
 
* <tex>\{0, 1\}</tex> {{---}} <tex>O(k+n)</tex>

Версия 23:59, 20 марта 2019

Пример списка с пропусками

Список с пропусками (англ. skip list) — вероятностная структура данных, позволяющая в среднем за [math]O(\log(n))[/math] времени выполнять операции добавления, удаления и поиска элементов.

Структура данных основана на многоуровневом связном отсортированном списке. На самом нижнем (первом) уровне располагаются все элементы в отсортированном порядке. Дальше почти половина элементов таким же образом располагаются на втором, почти четверть [math]-[/math] на третьем и так далее, но при этом известно, что если элемент расположен на каком-то уровнем [math]L_i[/math], то он соответственно расположен и на всех уровнях [math]L_j[/math], где [math]j \lt i[/math].

Построение

Допустим, что нам задан односвязный отсортированный список.


SimpleList.png


Тогда на первом уровне мы расположим заданный список, на втором [math]-[/math] только элементы с чётными номерами с ссылками на соответствующие элементы первого уровня, на третьем [math]-[/math] с номерами, кратными [math]4[/math], и так далее. Такой список будет позволять в среднем за [math]O(\log{n})[/math] выполнять операции поиска, добавления и удаления элементов.


SkipList.png


Функция [math]\ \mathtt{buildLvl} \ [/math] возвращает новый уровень списка с пропусками на основе предыдущего построенного уровня.

   list buildLvl (list lvl)                   // Отсеивание нечётных элементов
       list nextLvl 
       node i = lvl.head()                     // Перебор всех элементов lvl
       while (i != null) and (i != lvl.tail())
           nextLvl.push_back(node(i.key, i))  // Конструктор node(key, down) возвращает новую вершину с ключом key и ссылкой down на соответствующую вершину предыдущего уровеня
           i = i.next.next                     // Переход к следующему чётному элементу
       return nextLvl 

Функция [math]\ \mathtt{skipList} \ [/math] принимает в качестве аргумента односвязный отсортированный список и возвращает новый список с пропусками, построенный на его основе.

   list skipList (list l):
       list lvl = buildLvl(l)                 // Построение первого уровня
       while lvl.size() > 2              // Добавление следующих уровней; последний содержит не более двух элементов
           lvl = buildLvl (lvl)                       
       return lvl                        // Возвращает ссылку на начало верхнего уровня

Операции над структурой

Поиск элемента

Допустим, что в нашем списке с пропусками существуют [math]k[/math] уровней, при этом первым уровнем [math]L_1[/math] будет исходный список.

В таком случае алгоритм поиска в этой структуре будет представлять из себя следующие операции:

  1. Начинаем поиск элемента в верхнем списке ([math]L_k[/math]), рассмотрим первый элемент
  2. Переходить к следующему элементу списка, пока значение в следующей ячейке меньше или равно ключу
  3. Переместиться на один уровень вниз и перейти к пункту 2. Если рассматриваемый элемент находится на нижнем уровне [math]-[/math] выйти из поиска

Пример поиска числа [math]8[/math] в списке из описания:

SkipListSearch.png

Если в качестве случайного источника использовать честную монету, то тогда если в списке будет [math]n[/math] элементов, то количество уровней в среднем будет равно [math]\log{n}[/math]. Тогда на последнем уровне будет не более двух элементов, а на каждом следующем будет почти в два раза больше. Тогда на каждом уровне мы проверим не более двух элементов (если бы на каком-нибудь уровне проверили три элемента, то в среднем это значило, что мы могли пройти на верхнем уровне на один элемент больше). Уровней всего [math]\log{n}[/math], откуда вытекает оценка времени поиска элемента в [math]O(\log{n})[/math].

   T find (list skip_list, K key)
       node res 
       for (res = skip_list.head; res.ref != null; res = res.ref) // Пока ещё не дошли до первого уровня 
           while res.key < key                                        // Переходим к следующему элементу
               res = res.next() 
       return res.data 

Вставка элемента

Для вставки элемента в список с пропусками, нам необходимо выполнить следующие шаги:

  1. Найти с помощью алгоритма поиска позицию, где мог бы находиться элемент.
  2. Вставить наш элемент в текущий уровень списка с пропусками
  3. Подбросить монету.
  4. Если выпал «Орёл» то перейти на уровень выше и вернуться к шагу [math]2[/math]
  5. Иначе закончить операцию вставки

Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется [math]\dfrac{n}{2}[/math], на третьем уровне [math]-[/math] [math]\dfrac{n}{4}[/math] и т.д. На уровне [math]\log{n}[/math] у нас окажется один элемент. Ну и соответственно вероятности попасть элементу на второй уровень — это [math]\dfrac{1}{2}[/math], на третий [math]\dfrac{1}{4}[/math] и т.д. Вероятность попасть на уровень [math]\log{n}[/math] равна [math]\dfrac{1}{n}[/math].

Используя монетку с распределением отличным от [math]\left\{\dfrac{1}{2}, \ \dfrac{1}{2}\right\}[/math], можно влиять на количество элементов на верхних уровнях. Так, например, при использовании монеты с распределением [math]\{p,q\}[/math] математическое ожидание количества элементов на уровне [math]k[/math] равно [math]n q^k[/math], на каждом следующем уровне будет в среднем в [math]q[/math] раз больше элементов. Таким образом, время поиска будет равно [math]O\left(\dfrac{k}{q} + nq^k\right)[/math]. Соответственно при честной монетке и [math]\log(n)[/math] уровней получаем оценку, полученную ранее. Для крайних распределений:

  • [math]\{0, 1\}[/math][math]O(k+n)[/math]
  • [math]\{1, 0\}[/math][math]\infty[/math] (если разрешить добавление новых уровней при проталкивании элемента после броска монетки; иначе [math]O(n)[/math])

Удаление элемента

Алгоритм удаления достаточно тривиален.

  1. Найти удаляемый элемент
  2. Удалить его со всех уровней

Псевдокод

Наглядный, но не очень эффективный по памяти вариант списка с пропусками.

В узлах списка хранятся:

  • [math]next[/math] — следующий узел
  • [math]down[/math] — тот же узел на следующем уровне
  • [math]data[/math] — данные типа T
  • [math]key[/math] — ключ типа K

Вставка:

   node insert (node i, K key, T data)
       while i.key <= key                   // Ищем подходящее место
           i = i.next() 
       node tmp = null                      // Для записи в поле down
       if i.ref != null                     // Мы не на нижнем уровне
           tmp = insert (i.ref, key)        // Рекурсивный вызов на более низком уровне
           if tmp == null                   // Проверка броска монетки
               return null 
       i.next = new node (i.next, tmp, data, key)  //Непосредственно вставка
       if random(0,1) > 0.5                 // Бросок монетки
           return i.next                    // Нужно передать новый элемент для вставки выше
       else
           return null 
   void insert (list skip_list, K key, T data) // Обёрточка
       insert(skip_list.head, key, data) 

Удаление:

   void erase (node i, K key)
       if i == null
           return 
       while i.key <= key                   // Ищем элемент
           i = i.next() 
       erase(i.ref, key)                    // Удаляем с нижних уровней
       if i.key == key                      // Если ключ совпадает
           delete(i)                        // удаляем и с этого уровня
   void erase (list skip_list, K key) // Обёрточка
       erase(skip_list.head, key) 

Применение

  • Базы данных
  • Распределённые вычисления и p2p
  • Масштабируемые параллельные приоритетные очереди и словари

В вычислительной геометрии широко применяются структуры на основе списка с пропусками.

См. также

Структуры на основе списка с пропусками:

Источники информации