Теорема Дирака — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Источники информации: категория)
(Теорема)
Строка 14: Строка 14:
 
Пусть <tex>G</tex> {{---}} неориентированный граф и <tex>\delta</tex> {{---}} минимальная степень его вершин. Если <tex>n \geqslant 3</tex> и <tex>\delta \geqslant n/2</tex>, то  <tex>G</tex> {{---}} [[Гамильтоновы графы|гамильтонов граф]].
 
Пусть <tex>G</tex> {{---}} неориентированный граф и <tex>\delta</tex> {{---}} минимальная степень его вершин. Если <tex>n \geqslant 3</tex> и <tex>\delta \geqslant n/2</tex>, то  <tex>G</tex> {{---}} [[Гамильтоновы графы|гамильтонов граф]].
 
|proof=
 
|proof=
Пусть <tex>C</tex> {{---}} цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \geqslant \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x \dots y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \geqslant n/2</tex>, а значит <tex>\delta \geqslant n - \delta > n - l = |V(G \backslash C)|</tex> и каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>.
+
Пусть <tex>C</tex> {{---}} цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \geqslant \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x \dots y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \geqslant n/2</tex>, а значит <tex>\delta \geqslant n - \delta > n - l = |V(G \backslash C)|</tex>. Поэтому каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>.
 
Заметим, что вершина <tex>x</tex> не может быть смежна:
 
Заметим, что вершина <tex>x</tex> не может быть смежна:
 
* с вершинами из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше либо равно <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл <tex>C</tex>.
 
* с вершинами из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше либо равно <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл <tex>C</tex>.

Версия 00:22, 1 июня 2019

Лемма о длине цикла

Лемма (о длине цикла):
Пусть [math]G[/math] — произвольный неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]\delta \geqslant 2[/math], то в графе [math]G[/math] существует цикл [math]C[/math] длиной [math]l \geqslant \delta + 1[/math].
Доказательство:
[math]\triangleright[/math]
Рассмотрим путь максимальной длины [math]P = v_0 v_1 \dots v_s[/math]. Все смежные с [math]v_0[/math] вершины лежат на [math]P[/math]. Обозначим [math]k = \max \{i: v_0 v_i \in E\} [/math]. Тогда [math]\delta \leqslant \deg v_0 \leqslant k[/math]. Цикл [math]C = v_0 v_1 \dots v_k v_0[/math] имеет длину [math]l = k + 1 \geqslant \delta + 1[/math]
[math]\triangleleft[/math]

Теорема

Теорема (Дирак):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]

Пусть [math]C[/math] — цикл наибольшей длины в графе [math]G[/math]. По лемме его длина [math]l \geqslant \delta + 1[/math]. Если [math]C[/math] - гамильтонов, то теорема доказана. Предположим обратное, т. е. [math]G \backslash C \ne \varnothing[/math]. Рассмотрим путь [math]P = x \dots y : P \cap C = \{y\}[/math] наибольшей длины [math]m[/math]. Заметим, что по условию [math]\delta \geqslant n/2[/math], а значит [math]\delta \geqslant n - \delta \gt n - l = |V(G \backslash C)|[/math]. Поэтому каждая вершина из [math]G \backslash C[/math] смежна с некоторыми вершинами из [math]C[/math]. Заметим, что вершина [math]x[/math] не может быть смежна:

  • с вершинами из [math]C[/math], расстояние от которых до [math]y[/math] (по [math]C[/math]) не превышает m. Действительно, пусть вершина [math]v \in C[/math] и расстояние от [math]v[/math] до [math]y[/math] по циклу меньше либо равно [math]m[/math]. Тогда этот участок цикла можно заменить на [math]v \rightarrow x \rightarrow P \rightarrow y[/math], длина которого [math]m + 1[/math]. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикл [math]C[/math].
  • двум смежным вершинам на [math]C[/math]. Пусть [math]u, v \in C[/math] и [math]\{(u, v), (u, x), (x, v)\} \in E[/math]. Тогда заменив ребро [math](u, v)[/math] на [math]u \rightarrow x \rightarrow v[/math], увеличим длину цикла на [math]1[/math].
  • вершинам из [math]G \backslash (C \cup P)[/math], поскольку [math]P[/math] максимальный.
Получаем [math]deg\ x \leqslant m + (l - 2m)/2 = l/2 \lt n/2 \leqslant \delta[/math]. Противоречие.
[math]\triangleleft[/math]

Альтернативное доказательство

Теорема (Дирак — альтернативное доказательство):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Для [math]\forall k[/math] верна импликация [math]d_k \leqslant k \lt n/2 \Rightarrow d_{n-k} \geqslant n-k[/math], поскольку левая её часть всегда ложна. Тогда по теореме Хватала [math]G[/math] — гамильтонов граф.
[math]\triangleleft[/math]
Теорема (Вывод из теоремы Оре):
Пусть [math]G[/math] — неориентированный граф и [math]\delta[/math] — минимальная степень его вершин. Если [math]n \geqslant 3[/math] и [math]\delta \geqslant n/2[/math], то [math]G[/math]гамильтонов граф.
Доказательство:
[math]\triangleright[/math]
Возьмем любые неравные вершины [math] u, v \in G [/math]. Тогда [math] \displaystyle \deg u + \deg v \geqslant \frac n 2 + \frac n 2 = n [/math]. По теореме Оре [math] G [/math] — гамильтонов граф.
[math]\triangleleft[/math]

См. также

Источники информации

  • Wikipedia — Dirac's Theorem
  • Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1 and 2. Elsevier (North-Holland), Amsterdam, and MIT Press, Cambridge, Mass. ISBN 0-262-07169-X.