Декартово дерево по неявному ключу — различия между версиями
Pashkal (обсуждение | вклад) |
Pashkal (обсуждение | вклад) |
||
| Строка 16: | Строка 16: | ||
===Split=== | ===Split=== | ||
| + | Пусть процедура '''split''' запущена в корне дерева с требованием отрезать от дерева <tex>t</tex> вершин. Также известно, что в левом поддереве вершины находится <tex>l</tex> вершин, а в правом <tex>r</tex>. Рассмотрим сначала два тривиальных случая. Первый: <tex>l = t</tex>. В этом случае процедура '''split''' должна просто пометить, что у корня больше нет левого сына, и вернуть его бывшего левого сына в качестве левого ответа, а сам корень {{---}} в качестве правого. Второй крайний случай (<tex>t = l + 1</tex>) рассматривается аналогично. Следующий случай не так тривиален: <tex>t < l</tex>. В этом случае нужно рекурсивно запустить процедуру '''split''' от левого сына с тем же параметром <tex>t</tex>, и левая часть сына станет левым ответом нашей процедуры, а правая часть станет левым сыном корня, после чего корень станет правым ответом. Случай <tex>t > l + 1</tex> рассматривается аналогично, с той лишь разницей, что от правого сына отпиливается <tex>t - l - 1</tex> вершин. | ||
| + | |||
| + | ===Merge=== | ||
| + | Посмотрим любую из реализаций процедуры '''merge'''. Заметим, что в ней программа ни разу не обращается к ключу <tex>X</tex>. Поэтому реализация процедуры '''merge''' для декартова дерева по неявному ключу вообще не будет отличаться от реализации той же процедуры в обычном декартовом дереве. | ||
| + | |||
| + | ===Поддержание корректности ключей <tex>X</tex>=== | ||
| + | Единственное действие, обеспечивающее корректность этих ключей заключается в том, что после любого действия с детьми вершины нужно записать в ее ключ <tex>X</tex> сумму этих ключей в ее новых детях, увеличенную на единицу. | ||
Версия 08:47, 7 июня 2011
| « |
Декартово дерево правит миром. За логарифм. | » |
| — Неизвестный автор | ||
Содержание
Постановка задачи
Возьмем структуру данных вектор. В её стандартной реализации мы умеем добавить элемент в конец, узнать значение элемента и изменить элемент по номеру, и удалить последний элемент. Расширим круг задач: теперь мы хотим добавлять элемент в любое место (с соответствующим изменением нумерации элементов) и удалять любой элемент (с тем же самым уточнением). Теперь нам нужно придумать структуру, называемую Декартово дерево по неявному ключу, или же rope(англ.веревка).
Основная идея
Напомним, Декартово дерево — это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. Для решения задачи, поставленной в предыдущей главе, попробуем слегка модифицировать эту структуру. Если конкретнее, то оставим в нем только один ключ - ключ . Вместо второго ключа будем использовать следующую величину: количество элементов в нашей структуре, находящихся левее нашего элемента. Если проще, то будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу.
Заметим, что при этом сохранится структура двоичного дерева поиска по этому ключу(т.е. наше модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: наши операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется времени, где — количество элементов в дереве.
Как же нам быть? Основная идея заключается в том, что такой ключ сам по себе нигде не хранится. Вместо него будем хранить вспомогательную величину: количество вершин в поддереве нашей вершины(в поддерево включается и сама вершину). Обратим внимание, что все операции с обычным декартовым деревом делались сверху. Также заметим, что если по пути до некой вершины просуммируем все такие величины в левых поддеревьях, в которые мы не пошли, увеличенные на единицу, то придя в саму вершину и добавив к этой величине количество элементов в её левом поддереве, мы получим как раз ее ключ .
Операции, поддерживающие структуру декартова дерева
Структура обычного декартова дерева поддерживается с помощью двух операций: split — разбиение одного декартова дерева на два таких, что в одном ключ меньше, чем заданное значение, а в другом — больше, и merge — слияние двух деревьев, в одном из которых все ключи меньше, чем во втором. С учетом отличий декартова дерева по неявному ключу от обычного, операции теперь будут описываться так: разбиение дерева на два так, что в левом окажется ровно вершин, и слияние двух любых деревьев.
Split
Пусть процедура split запущена в корне дерева с требованием отрезать от дерева вершин. Также известно, что в левом поддереве вершины находится вершин, а в правом . Рассмотрим сначала два тривиальных случая. Первый: . В этом случае процедура split должна просто пометить, что у корня больше нет левого сына, и вернуть его бывшего левого сына в качестве левого ответа, а сам корень — в качестве правого. Второй крайний случай () рассматривается аналогично. Следующий случай не так тривиален: . В этом случае нужно рекурсивно запустить процедуру split от левого сына с тем же параметром , и левая часть сына станет левым ответом нашей процедуры, а правая часть станет левым сыном корня, после чего корень станет правым ответом. Случай рассматривается аналогично, с той лишь разницей, что от правого сына отпиливается вершин.
Merge
Посмотрим любую из реализаций процедуры merge. Заметим, что в ней программа ни разу не обращается к ключу . Поэтому реализация процедуры merge для декартова дерева по неявному ключу вообще не будет отличаться от реализации той же процедуры в обычном декартовом дереве.
Поддержание корректности ключей
Единственное действие, обеспечивающее корректность этих ключей заключается в том, что после любого действия с детьми вершины нужно записать в ее ключ сумму этих ключей в ее новых детях, увеличенную на единицу.
