Динамическое программирование
<wikitex>
Содержание
Процесс разработки алгоритмов динамического программирования
В процессе составления алгоритмов динамического программирования, требуется следовать последовательности из четырёх действий:
- Описать структуру оптимального решения
- Рекурсивно определить значение оптимального решения
- Вычислить значение оптимального решения с помощью метода восходящего анализа
- Составить оптимального решения на основе полученной информации
Оптимальная подструктура
Задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе кратчайшего пути от одной вершины к другой.
Задача по нахождению кратчайшего пути между некоторыми вершинами графа содержит в себе оптимальное решение подзадач. Это свойство называется оптимальной подструктурой. Наличие у задачи этого свойства определяет её решаемость динамическим программированием.
Иногда оптимальная структура может отсутствовать в задаче. Рассмотрим задачу, в которой имеется ориентированный граф $G = (V, E)$ и вершины $u, v \in V$, задачу по определению простого пути от вершины $u$ к вершине $v$, состоящий из максимального количества рёбер.
Рассмотрим путь $q \rightarrow r \rightarrow t$, который является самым длинным простым путем $q \rightsquigarrow t$. Является ли путь $q \rightarrow r$ самым длинным путем $q \rightsquigarrow r$? Нет, поскольку простой путь $q \rightarrow s \rightarrow t \rightarrow r$ длиннее. Является ли путь $r \rightarrow t$ самым длинным путем $r \rightsquigarrow t$? Снова нет, поскольку простой путь $r \rightarrow q \rightarrow s \rightarrow t$ длиннее. Таким образом, в задаче о поиске самого длинного невзвешенного пути не возникает никаких оптимальных подструктур. Для этой задачи до сих пор не найдено ни одного эффективного алгоритма, работающего по принципу динамического программирования. Фактически, это NP-полная задача, т.е. вряд ли ее можно решить в течение полиномиального времени.
Оптимальность для подзадач
Важнейшее свойство задач, которое позволяет решать их с помощью динамического программирования, это оптимальность для подзадач. В зависимости от формулировки задачи, будь то динамическое программирование на отрезке, на префиксе, на дереве, термин оптимальности для подзадач может быть различным, но, в целом, формулируется так:
Определение: |
«Если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом» |
Принцип оптимальности для динамического программирования на префиксе
Рассмотрим принцип оптимальности для динамического программирования на префиксе.
Задан граф. Требуется дойти от некоторой начальной вершины $S$ до конечной $T$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Есть какой-то префикс, оптимальный путь проходит через $U$. Рассмотрим префикс $\Delta U$, т.е. путь $S \rightsquigarrow U$, пусть он неоптимальный. Это значит, что есть более оптимальный путь. Тогда заменим этот префикс на более оптимальный путь до $U$, а путь $U \rightsquigarrow T$ добавим в конец. Получится более оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется. То есть, чтобы путь $S \rightsquigarrow T$ был оптимальным, нужно чтобы префиксы перед $T$ оптимальными, иными словами, оптимальные префиксы путей между соседними вершинами составляют оптимальный путь от начальной вершины до конечной. </wikitex>
Ссылки
- Лекция 10.11.2011
- Т. Кормен. «Алгоритмы. Построение и анализ» (второе издание, Глава 15)
- T. H. Cormen. «Introduction to Algorithms» (third edition, Chapter 15)