Алгоритмы точного вычисления гиперобъема
Постановка задачи
- точка в -мерном пространстве.
Точка
доминирует точку ( ), если .- множество из точек в -мерном пространстве таких, что - никакая точка не доминируется другой точкой из этого множества.
- гиперобъем множества .
В частности, если
, то .Задача: найти точное значение гиперобъема
множества из точек -мерного пространоства.Алгоритм включения-исключения (Inclusion-Exclusion Algorithm, IEA)
Самый простой алгоритм нахождения гиперобъема базируется на идее комбинаторной формулы включения-искючения. Все множество представляется в виде объединения гиперкубов ( ), соответствующих отдельным точкам .
После этого объем всего множества вычисляется по формуле:Объем пересечения гиперкубов легко считается как произведение по каждой координате минимального значения этой координаты среди всех точек, которым соответствуют гиперкубы.
Таким образом, в этом алгоритме перебираются все подмножества точек множества
, для каждого множества находится гиперобъем пересечения соответствующих гиперкубов и он прибавляется с соответствующим знаком к ответу. Время работы этого алгоритма составляет .Алгоритм LebMeasure
Алгоритм LebMeasure обрабатывает точки множества
Например, если изначально было четыре точки в трехмерном пространстве по очереди. Для каждой очередной точки находится объем некоторого максимального по включению гиперкуба, доминируемого эксклюзивно только этой точкой и она заменяется на некоторое множество порожденных точек, которые доминируют оставшуюся область, доминировшуюся до этого точкой .Обработка точек продолжается, пока все точки не будут обработаны. Таким образом, время работы алгоритмы напрямую зависит от количества порожденных точек. Легко заметить, что таких точек не более, чем
, поскольку каждая координата каждой порожденной точки равна соответствующей координате некоторой точки исходного множества .