Динамика по поддеревьям
Динамика по поддеревьям
Главной особенностью динамического программирования по дереву является необходимость учитывать ответы в поддеревьях, т.к. они могут влиять на ответы в других поддеревьях. Рассмотрим для лучшего понимания динамики по поддеревьям задачу о максимальном взвешенном паросочетании в дереве.
Задача о максимальном взвешенном паросочетании на дереве
Формулировка
Пусть дано подвешенное за корень дерево, имеющее веса на каждом из его ребер. Необходимо выбрать такое множество ребер, что бы сумма значений была максимальной и при этом выбранные ребра не имели бы общих вершин. Т.е. необходимо решить задачу о максимальном взвешенном паросочетании.
Решение
Главное отличие этой задачи от других динамически решаемых — ответ в одном поддереве влияет на решение в остальных.
Рассмотрим наше первое состояние, когда еще не выбрана ни одна вершина. В этом случае мы можем сделать две вещи:
- Разрешить выбирать ребро из корня к ребенку
- Запретить выбирать ребра из корня
Если мы запрещаем, значит можем разрешить всем его детям выбрать ребро из своего корня к своим детям. В ином случае мы можем разрешить не всем детям, а только тем, которые не были выбраны ребром из корня.
Рекуррентная формула
Обозначим в качестве
функцию, возвращающую ответ для поддерева с корнем . Если , то в этом поддереве мы разрешаем занимать корень. Иначе нет.
Заметим, что вторую формулу можно упростить:
Теперь наши формулы имеют вид:
Заметим, что с помощью этого преобразования мы сократили общее время вычисления с
до .Псевдокод
function calculate(v, root): if dp[v][root] != -1: return dp[v][root] #вернули уже посчитанное значение dp[v][root] sum1 = 0 #случай 1: не берем ребра из корня if root==0: for u in child(v): sum1 += calculate(u, 1) #выполняем мемоизацию dp[v][root] = sum1 return sum1 max1 = dp[v][0] #случай 2: берем какое-то ребро for x in child(v): max1 = max(max1, calculate(x, 0) + calculate(v, 0) - calculate(x, 1) + w[v,x]) # выполняем мемоизацию dp[v][root] = max1 return dp[v][root]