Теорема о компактности сопряжённого оператора
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть
является компактным оператором. Тогда сопряженный к нему оператор также является компактным.Доказательство теоремы
Итак, рассмотрим оператор
. По определению сопряженного оператора, если , то . Будем последовательны.1. Для доказательства необходимо показать, что множество
будет относительно компактно в . Для этого надо показать, что если взята последовательность такая, что , то можно выбрать такую, что сходится в .2. Рассмотрим в
единичный замкнутый шар . По компактности оператора будет метрическим компактом. Рассмотрим сужение функционалов на .3. Докажем равностепенную непрерывность этой последовательности: рассмотрим . Норма
не зависит от
, а следовательно равностепенно непрерывна.4. Выполняется и равномерная ограниченность последовательности. Для любого
:- .
5. Таким образом
равномерно ограничена и равностепенно непрерывна, следовательно, по теореме Арцела — Асколи из нее можно выделить равномерно сходящуюся последовательность в .Для доказательства теоремы осталось показать, что
сходится в . Для этого достаточно выяснить, что равномерно сходится (при устремлении к бесконечности) на .6. Рассмотрим
. По равномерной сходимости на : .7. Следовательно, для любого
верно . Замечая, что , приходим к равномерной сходимости на .Таким образом, теорема доказана.