Алгоритмы точного вычисления гиперобъема
Версия от 20:20, 17 июня 2012; Joshik (обсуждение | вклад)
Эта статья находится в разработке!
Постановка задачи
- точка в -мерном пространстве.
Точка
доминирует точку ( ), если .- множество из точек в -мерном пространстве таких, что - никакая точка не доминируется другой точкой из этого множества.
- гиперобъем множества .
В частности, если
, то .Задача: найти точное значение гиперобъема
множества из точек -мерного пространоства.Алгоритм включения-исключения (Inclusion-Exclusion Algorithm, IEA)
Самый простой алгоритм нахождения гиперобъема базируется на идее комбинаторной формулы включения-искючения. Все множество представляется в виде объединения гиперкубов ( ), соответствующих отдельным точкам .
После этого объем всего множества вычисляется по формуле:Объем пересечения гиперкубов легко считается как произведение по каждой координате минимального значения этой координаты среди всех точек, которым соответствуют гиперкубы.
Таким образом, в этом алгоритме перебираются все подмножества точек множества
, для каждого множества находится гиперобъем пересечения соответствующих гиперкубов и он прибавляется с соответствующим знаком к ответу. Время работы этого алгоритма составляет .