Сортирующие сети для квадратичных сортировок
Рассмотрим модели сортирующих сетей для квадратичных сортировок.
Сортирующие сети с последовательной сортировкой
На один слой будем устанавливать только один компаратор. Все последующие сети получаются простым моделированием соответствующих сортировок.
Сортировка пузырьком | Сортировка вставками | Сортировка выбором |
Сортирующие сети с параллельной сортировкой
На один слой устанавливается несколько компараторов.
Сортировка пузырьком и вставками
Заметим, что если сжать последовательные сортирующие сети пузырьком и вставками, то результат будет одним и тем же. Это видно из симметрии расположения компараторов на картинках выше.
Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Докажем данное утверждение по принципу математической индукции. База индукции: При . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется.Шаг индукции: Пусть — количество слоев в сети сортировки.При переходе от сортирующей сети с Значит, новые слои создадутся лишь благодаря компаратором входами к сети с входами, добавляем дополнительных компараторов ( или , т.к. возможны две стратегии добавления; отсюда, кстати, тоже видна эквивалентность схем для обоих сортировок). Будем также поддерживать сортирующую сеть в виде "треугольной" сети. Таким образом компараторы можно расположить в существующих слоях над самым верхним компаратором в соответствующем слое. То есть в сети с входами был слой с единственным компаратором , поэтому над ним можно разместить компаратор , на — . Затем на следующем слое будет уже два компаратора: над , поэтому сверху можно добавить . В общем виде, на слое с номером с конца (до середины треугольника), будет компараторов, последним из которых является , следовательно, на этот слой можно добавить компаратор . и , поэтому число слоёв в новой сети составит , что удовлетворяет нашему соотношению. |
Сортирующая сеть для
:Сортировка выбором
Сеть для сортировки выбором выглядит иначе. При переходе к сети с
входами, добавляется компараторов: .Утверждение: |
В результирующей сети будет слоев, где — количество входов. |
Определим операцию вложения компаратора в компаратор : разместим компаратор и на одном слое, так, что .Теперь воспользуемся принципом математической индукции. База индукции: . В сети всего два входа, на которых располагается один компаратор, тем самым наше предположение выполняется. Шаг индукции: Пусть — количество слоев в сети сортировки с входами.При переходе от сортирующей сети с Тогда наш переход выполняется и формула верна. Что и требовалось доказать. входами к сети с входами, добавляем компараторов . Заметим, что в добавленных компаратора можно вложить компараторов из предыдущей сети, так, вкладывая один компаратор в другой, образуется новый слой, т.е. количество слоев не изменяется. Тогда останется два компаратора: в которые ничего нельзя вложить, т.е. количество слоев изменяется на . |
Пример правильной и ошибочной сети для
. Если перенести свободные компараторы и слить их в один слой, то можно уменьшить количество слоев, но при этом сеть перестает быть сортирующей (при ошибка будет возникать на последовательности ).См.также
Источники информации
- Дональд Э. Кнут. Искусство программирования. Том 3. Сортировка и Поиск. стр. 238— ISBN 0-201-89685-0
- Кормен, Томас Х.,Рональд Л., Штайн, Клифорд. Глава 27. Сортирующие сети // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-e издание. — М.: «Вильямс», 2005. — С. 799 - 822. — ISBN 5-8459-0857-4.
- Википедия — Сети сортировки