Дек
Содержание
Определение
Дек (от англ. deque — double ended queue) — структура данных, представляющая из себя список элементов, в которой добавление новых элементов и удаление существующих производится с обоих концов. Эта структура поддерживает как FIFO, так и LIFO, поэтому на ней можно реализовать как стек, так и очередь. В первом случае нужно использовать только методы головы или хвоста, во втором — методы push и pop двух разных концов. Дек можно воспринимать как двустороннюю очередь. Он имеет следующие операции:
- — проверка на наличие элементов,
- (запись в конец) — операция вставки нового элемента в конец,
- (снятие с конца) — операция удаления конечного элемента,
- (запись в начало) — операция вставки нового элемента в начало,
- (снятие с начала) — операция удаления начального элемента.
Реализации
Дек расходует только
памяти, на хранение самих элементов.Простая реализация
В данной реализации изначально
и . Ключевые поля:- — массив, с помощью которого реализуется дек, способный вместить не более элементов,
- — индекс головы дека,
- — индекс хвоста.
Дек состоит из элементов
. Если происходит максимум добавлений, то массив длины может вместить в себя все добавленные элементы.boolean empty(): return d.head == d.tail
function pushBack(x : T): d[d.tail] = x d.tail = d.tail + 1
T popBack():
if (empty())
return error "underflow"
d.tail = d.tail - 1
return d[d.tail]
function pushFront(x : T): d.head = d.head - 1 d[d.head] = x
T popFront():
if (empty())
return error "underflow"
T ret = d[d.head]
d.head = d.head + 1
return ret
Циклический дек на массиве константной длины
Во всех циклических реализациях изначально присвоены следующие значения
и . Ключевые поля:- — массив, с помощью которого реализуется дек, способный вместить не более элементов,
- — индекс головы дека,
- — индекс хвоста.
Дек состоит из элементов
или и . Всего он способен вместить не более элементов. В данной реализации учитывается переполнение и правильно обрабатывается изъятие из пустого дека. Недостатком является константная длина массива, хранящего элементы. Все операции выполняются за .function pushBack(x : T):
if (head == (tail + 1) % n)
return error "overflow"
d[tail] = x
tail = (tail + 1) % n
T popBack():
if (empty())
return error "underflow"
tail = (tail - 1 + n) % n
return d[tail]
function pushFront(x : T):
if (head == (tail + 1) % n)
return error "overflow"
head = (head - 1 + n) % n
d[head] = x
T popFront():
if (empty())
return error "underflow"
T ret = d[head]
head = (head + 1) % n
return ret
Циклический дек на динамическом массиве
Ключевые поля:
- — размер массива,
- — массив, в котором хранится дек,
- — временный массив, где хранятся элементы после перекопирования,
- — индекс головы дека,
- — индекс хвоста.
Дек состоит из элементов динамическом массиве, то мы можем избежать ошибки переполнения. При выполнении операций и происходит проверка на переполнение и, если нужно, выделяется большее количество памяти под массив. Также происходит проверка на избыточность памяти, выделенной под дек при выполнении операций и . Если памяти под дек выделено в четыре раза больше размера дека, то массив сокращается в два раза. Для удобства выделим в отдельную функцию получение текущего размера дека.
или и . Если реализовывать дек наint size() if tail > head return n - head + tail else return tail - head
function pushBack(x : T): if (head == (tail + 1) % n) T newDeque[n * 2] for i = 0 to n - 2 newDeque[i] = d[head] d.head = (d.head + 1) % n d = newDeque head = 0 tail = n - 1 n = n * 2 d[tail] = x tail = (tail + 1) % n
T popBack():
if (empty())
return error "underflow"
if (size() < n / 4)
T newDeque[n / 2]
int size = size()
for i = 0 to size - 1
newDeque[i] = d[head]
head = (head + 1) % n
d = newDeque
head = 0
tail = size
n = n / 2
tail = (tail - 1 + n) % n
return d[tail]
function pushFront(x : T): if (head == (tail + 1) % n) T newDeque[n * 2] for i = 0 to n - 2 newDeque[i] = d[head] head = (head + 1) % n d = newDeque head = 0 tail = n - 1 n = n * 2 head = (head - 1 + n) % n d[head] = x
T popFront():
if (empty())
return error "underflow"
if (size() < n / 4)
T newDeque[n / 2]
int size = size()
for i = 0 to size - 1
newDeque[i] = d[d.head]
head = (head + 1) % n
d = newDeque
head = 0
tail = size
n = n / 2
T ret = d[head]
head = (head + 1) % n
return ret
На списке
Ключевые поля:
-
ListItem(data : T, next : ListItem, prev : ListItem)
— конструктор, - — ссылка на хвост,
- — ссылка на голову.
Дек очень просто реализуется на двусвязном списке. Он состоит из элементов . Элементы всегда добавляются либо в , либо в . В данной реализации не учитывается изъятие из пустого дека.
function initialize(): head = ListItem(null, null, null) tail = ListItem(null, null, head) head.next = tail
function pushBack(x : T): head = ListItem(x, head, null) head.next.prev = head
T popBack(): data = head.data head = head.next return data
function pushFront(x : T): tail = ListItem(x, null, tail) tail.prev.next = tail
T popFront(): data = tail.data tail = tail.prev return data
На двух стеках
Ключевые поля:
- — ссылка на хвост,
- — ссылка на голову.
Храним два стека — и . Левый стек используем для операций и , правый — для и . Если мы хотим работать с левым стеком и при этом он оказывается пустым, то достаем нижнюю половину элементов из правого и кладем в левый, воспользовавшись при этом локальным стеком. Аналогично с правым стеком. Худшее время работы — .
function pushBack(x : T): leftStack.push(x)
T popBack(): if not leftStack.empty() return leftStack.pop() else int size = rightStack.size() Stack<T> local for i = 0 to size / 2 local.push(rightStack.pop()) while not rightStack.empty() leftStack.push(rightStack.pop()) while not local.empty() rightStack.push(local.pop()) return leftStack.pop()
function pushFront(x : T): rightStack.push(x)
T popFront(): if not rightStack.empty() return rightStack.pop() else int size = leftStack.size() Stack<T> local for i = 0 to size / 2 local.push(leftStack.pop()) while not leftStack.empty() rightStack.push(leftStack.pop()) while not local.empty() leftStack.push(local.pop()) return rightStack.pop()