Формула полной вероятности
Версия от 12:34, 5 декабря 2011; Shersh (обсуждение | вклад)
Формула полной вероятности позволяет вычислить вероятность интересующего события через вероятности событию произойти при выполнении гипотез и вероятность этих гипотез.
Теорема
Определение: |
Не более чем счётное множество событий , таких что:
|
В этом случае события
ещё называются гипотезами.Вероятность события
, которое может произойти вместе с одним из событий , равна сумме парных произведений вероятностей каждого из этих событий на соответствующие им условные вероятности наступления события .
Доказательство
События
образуют полную группу событий, значит событие можно представить в виде следующей суммы:(Для удобства чтения формулы обозначим операцию объединения за )
События несовместны, значит и события тоже несовместны. Тогда можно применить теорему о сложении вероятностей несовместных событий:
При этом
Окончательно получаем:
Замечание
Формула полной вероятности также имеет следующую интерпретацию. Пусть
— случайная величина, имеющая распределение- .
Тогда
- ,
т.е. априорная вероятность события равна среднему его апостериорной вероятности.