Материал из Викиконспекты
Лемма: |
Пусть [math]a_1, a_2, ..., a_n[/math] набор слов над алфавитом [math]\Sigma [/math]. И пусть [math]List(a_1, a_2, ... a_n) [/math] — язык над алфавитом [math] \Sigma \cup \{1, 2, ..., n \}[/math](для простоты будем считать, что [math] \Sigma \cap \{1, 2, ..., n\} = \varnothing [/math]), каждое слово которого имеет вид [math] i_1i_2...i_ka_{i_k}a_{i_{k-1}}...a_{i_1} [/math], где [math] i_j \in \{1, 2, ..., n\} [/math]. Тогда [math] \overline {List(a_1, a_2, ..., a_n)} [/math] — контекстно-свободный. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства построим МП-автомат с допуском по допускающему состоянию:
- [math] \Sigma = \{a_1, a_2, ..., a_n\} \cup \{1, 2, ..., n\} [/math];
- [math] \Gamma = \Sigma \cup z_0 [/math];
- [math] Q = \{ S_0, S_1\} [/math], где [math] S_0 [/math] — стартовое состояние, а [math] S_1 [/math] — допускающее.
Переходы определим следующим образом:
- [math]\delta(S_0, i, \alpha) = \langle S_0, a_i \alpha \rangle, i \in \{1, 2, ..., n \}[/math];
- [math] \delta(S_0, a_i, i) = \langle S_0, \varepsilon \rangle, i \in \{1, 2, ..., n \}[/math];
- [math] \delta(S_0, c, \alpha) = \langle S_1, \alpha \rangle [/math], для всех [math] c [/math] и [math] \alpha [/math], не подходящих под первые два правила;
- [math] \delta(S_1, c, \alpha) = \langle S_1, \alpha \rangle [/math], для любых [math] c [/math] и [math] \alpha [/math].
Несложно увидеть, что любое слово, принадлежащее [math] {List(a_1, a_2, ..., a_n)} [/math], оставит данный автомат в состоянии [math] S_0 [/math], в противном случае переведет его в допускающее состояние [math] S_1 [/math]. |
[math]\triangleleft[/math] |