Сортировка пузырьком

Материал из Викиконспекты
Перейти к: навигация, поиск

Сортировка простыми обменами, сортировка пузырьком (англ. bubble sort) — один из квадратичных алгоритмов сортировки.

Алгоритм

Алгоритм состоит в повторяющихся проходах по сортируемому массиву. На каждой итерации последовательно сравниваются соседние элементы, и, если порядок в паре неверный, то элементы меняют местами. За каждый проход по массиву как минимум один элемент встает на свое место, поэтому необходимо совершить не более [math] n - 1 [/math] проходов, где [math] n [/math] размер массива, чтобы отсортировать массив.

Псевдокод

Ниже приведен псевдокод сортировки пузырьком, на вход которой подается массив [math] A[0..n - 1] [/math].

function  bubbleSort(A):
   for i = 0 to n - 2
     for j = 0 to n - 2
       if A[j] > A[j + 1]
         swap(A[j], A[j + 1])

Оптимизация

  • Можно заметить, что после [math] i [/math]-ой итерации внешнего цикла [math] i [/math] последних элементов уже находятся на своих местах в отсортированном порядке, поэтому нет необходимости производить их сравнения друг с другом. Следовательно, внутренний цикл можно выполнять не до [math] n - 2 [/math], а до [math] n - i - 2 [/math].
  • Также заметим, что если после выполнения внутреннего цикла не произошло ни одного обмена, то массив уже отсортирован, и продолжать что-то делать бессмысленно. Поэтому внутренний цикл можно выполнять не [math] n - 1 [/math] раз, а до тех пор, пока во внутреннем цикле происходят обмены.

При использовании первой оптимизации сортировка принимает следующий вид:

function bubbleSort(A):
   for i = 0 to n - 2
      for j = 0 to n - i - 2
         if A[j] > A[j + 1]
            swap(A[j], A[j + 1])

При использовании же обеих оптимизаций сортировка пузырьком выглядит так:

function bubbleSort(A):
   i = 0
   t = true
   while t
     t = false
     for j = 0 to n - i - 2
       if A[j] > A[j + 1]
         swap(A[j], A[j + 1])
         t = true;
     i = i + 1

Сложность

В данной сортировке выполняются всего два различных вида операции: сравнение элементов и их обмен. Поэтому время всего алгоритма [math] T = T_1 + T_2 [/math], где [math] T_1 [/math] — время, затрачиваемое на сравнение элементов, а [math] T_2 [/math] — время, за которое мы производим все необходимые обмены элементов.

Так как в алгоритме меняться местами могут только соседние элементы, то каждый обмен уменьшает количество инверсий на единицу. Следовательно, количество обменов равно количеству инверсий в исходном массиве вне зависимости от реализации сортировки. Максимальное количество инверсий содержится в массиве, элементы которого отсортированы по убыванию. Несложно посчитать, что количество инверсий в таком массиве [math] \frac {n (n - 1)} {2} [/math]. Получаем, что [math] T_2 = O(n^2) [/math].

В неоптимизированной реализации на каждой итерации внутреннего цикла производятся [math] n - 1 [/math] сравнений, а так как внутренний цикл запускается также [math] n - 1 [/math] раз, то за весь алгоритм сортировки производятся [math] (n - 1)^2 [/math] сравнений.

В оптимизированной версии точное количество сравнений зависит от исходного массива. Известно, что худший случай равен [math] \frac {n (n - 1)} {2} [/math], а лучший — [math] n-1 [/math]. Следовательно, [math] T_1 = O(n^2) [/math].

В итоге получаем [math] T = T_1 + T_2 = O(n^2) + O(n^2) = O(n^2) [/math].

Пример работы алгоритма

Возьмём массив с числами «5 1 4 2 8» и отсортируем значения по возрастанию, используя сортировку пузырьком. Выделены те элементы, которые сравниваются на данном этапе.


Первый проход:

До После Описание шага
5 1 4 2 8 1 5 4 2 8 Здесь алгоритм сравнивает два первых элемента и меняет их местами.
1 5 4 2 8 1 4 5 2 8 Меняет местами, так как 5 > 4
1 4 5 2 8 1 4 2 5 8 Меняет местами, так как 5 > 2
1 4 2 5 8 1 4 2 5 8 Теперь, ввиду того, что элементы стоят на своих местах (8 > 5), алгоритм не меняет их местами.

Второй проход:

До После Описание шага
1 4 2 5 8 1 4 2 5 8
1 4 2 5 8 1 2 4 5 8 Меняет местами, так как 4 > 2
1 2 4 5 8 1 2 4 5 8
1 2 4 5 8 1 2 4 5 8

Теперь массив полностью отсортирован, но неоптимизированный алгоритм проведет еще два прохода, на которых ничего не изменится, в отличии от алгоритма, использующего вторую оптимизацию, который сделает один проход и прекратит свою работу, так как не сделает за этот проход ни одного обмена.

Модификации

Сортировка чет-нечет (англ. odd-even sort) — модификация пузырьковой сортировки, основанной на сравнении элементов стоящих на четных и нечетных позициях независимо друг от друга. Сложность — [math] O(n^2) [/math]. Псевдокод указан ниже:

function oddevensort(a):
for (i = 0 to n-1 step 1)
    if i mod 2 =0
         for (j = 2 to n-1 step 2)
             if (a[j] < a[j-1])
                 swap(a[j-1], a[j]))  
    else      
         for (j = 1 to n-1 step 2)
             if a[j] < a[j-1]
                 swap(a[j-1], a[j])

Преимущество этой сортировки — на нескольких процессорах она выполняется быстрее, так как четные и нечетные индексы сортируются параллельно.


Сортировка расческой (англ. comb sort) — модификация пузырьковой сортировки, основанной на сравнении элементов на расстоянии. Сложность —[math] O(n^2) [/math], но стремится к [math] O(n(log(n)) [/math]. Является самой быстрой квадратичной сортировкой. Недостаток — она неустойчива. Псевдокод указан ниже

function combsort(a):
      k =1.3
      jump = n
      bool swapped = true
      while jump > 1 and swapped)
          if jump > 1
              jump /= k
          swapped = false;
          for ( i = 0; i + jump < size; ++i)
              if a[i + jump]< array[i]
                  swap(array[i], array[i + jump])
                  swapped = true

Пояснения: Изначально расстояние между сравниваемыми элементами равно [math] n/k [/math], где k =1.3 — оптимальное число для этого алгоритма. Сортируем массив по этому расстоянию, потом уменьшаем его по этому же правилу. Когда расстояние между сравниваемыми элементами достигает единицы, массив досортировывается обычным пузырьком.

Сортировка перемешиванием (англ. cocktail sort), также известная как Шейкерная сортировка — разновидность пузырьковой сортировки, сортирующая массив в 2 направлениях на каждой итерации. В среднем, сортировка перемешиванием работает в 2 раза быстрее пузырька. Сложность — [math] O(n^2) [/math], но стремится она к [math] O(k \cdot n) [/math], где k — максимальное расстояние элемента в неотсортированном массиве от его позиции в отсортированном массиве. Псевдокод указан ниже:

Shakersort:        
count=0
for (int i = 0; i < n/2; i++)                                                  
    beg = 0;
    end = n - 1;
    while beg<=end do                               
        count += 2                                     
        if a[beg] >a[beg + 1]                  
            Swap(a[beg],a[beg+1]);    
            beg++
        if a[end-1] > a[end]
            Swap(a[end - 1], a[end]);
            end--;

См. также

Ссылки