Метрическое пространство

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!

Метрика и метрическое пространство

Пусть [math]X[/math] — абстрактное множество.

[math] X \times X = \{ (x_1, x_2): x_i \in X \} [/math] — прямое произведение множества [math]X[/math] на себя


Определение:
Отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
  1. [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника


Если на [math]X[/math] определена метрика, то пара [math](X, \rho)[/math] называется метрическим пространством, аббревиатура — МП.

Примеры

Числовая ось: [math] X = \mathbb{R}; x, y \in X \Rightarrow \rho (x, y) = |x - y| [/math]

[math] X = \mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n} ; \overrightarrow{x} = (x_1, \dots, x_n) [/math]

  1. [math] \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| [/math]
  2. [math] \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| [/math]

То есть, одно и то же множество можно по-разному превращать в метрическое пространство.

Открытые шары

Для метрических пространств основное значение имеют открытые шары.


Определение:
Пусть [math] (X, \rho) [/math] — метрическое пространство, пусть [math]\ \ r \in \mathbb{R},\ r \gt 0,\ a \in X [/math], тогда открытый шар радиуса [math]\ r\ [/math] в точке [math]\ a\ [/math] — это множество [math] V_r(a) = \{x \in X| \rho(x, a) \lt r \} [/math]


Пример

[math] X = \mathbb{R}: V_r(a) = (a - r; a + r) [/math]

Свойства шаров

Теорема (Основное свойство шаров):
Пусть [math] b \in V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]. Тогда [math] \exists r \gt 0:\ V_r(b) \subset \ V_{r_1}(a_1) \cap V_{r_2}(a_2)[/math]
Простым языком: Если два открытых шара пересекаются, то существует открытый шар, лежащий в их пересечении.
Доказательство:
[math]\triangleright[/math]

Замечание: для [math]X = \mathbb{R}[/math] это очевидно (переcечение двух интервалов есть интервал).

Пусть [math] y \in V_{r}(b)[/math]
[math] \rho (b, a_j) \lt r_j, j = 1,2 [/math]
[math] \exists r \gt 0: \rho (y, b) \lt r \Rightarrow \rho (y, a_j) \lt r_j, j = \overline{1,2}.[/math]
  1. [math] \rho (y, a_1) \le \rho (y, b) + \rho (b, a_1) \lt r_1 \Rightarrow \rho (y, b) \lt r_1 - \rho(b, a_1) = d_1,\ d_1 \gt 0 [/math]
  2. [math] \rho (y, a_2) \le \rho (y, b) + \rho (b, a_2) \lt r_2 \Rightarrow \rho (y, b) \lt r_2 - \rho(b, a_2) = d_2,\ d_2 \gt 0 [/math]
[math] r = \min(d_1, d_2) \Rightarrow \rho(y, b) \lt r \Rightarrow y[/math] войдет в оба шара
[math]\triangleleft[/math]

Открытые множества

Определение:
Множество [math] G \subset X [/math] называется открытым в метрическом пространстве, если его можно записать как некоторое объединение открытых шаров (в общем случае объединение может состоять из несчетного числа шаров).
[math] \tau [/math] — класс открытых множеств.
[math] \tau = \{ G [/math] — открытые в МП [math](X, \rho) \}[/math]


Свойства открытых множеств

  1. [math] X, \varnothing \in \tau [/math] — все пространство и пустое множество открыты
  2. [math] G_{\alpha} \in \tau, \alpha \in A \Rightarrow \bigcup\limits_{\alpha \in A} \in \tau [/math] — очевидно
  3. [math] G_1 \dots G_n \in \tau \Rightarrow \bigcap\limits_{j = 1}^n G_j \in \tau [/math]

Доказательство свойства 3:

[math] G_1 = \bigcup\limits_{\alpha}V_{\alpha}; G_2 = \bigcup\limits_{\beta}V_{\beta} [/math]
[math] G_1 \cap G_2 = \bigcup\limits_{\alpha, \beta}(V_{\alpha} \cap V_{\beta}) [/math]
По основному свойству шаров: [math] b \in V_\alpha \cap V_\beta \Rightarrow \exists V(b) \subset V_\alpha \cap V_\beta [/math]
Следовательно [math] V_{\alpha} \cap V_{\beta} [/math] — объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 [/math] — тоже объединение открытых шаров [math] \Rightarrow G_1 \cap G_2 \in \tau[/math] по 2 свойству.

Класс [math] \tau [/math] называется (метрической) топологией на множестве [math]X[/math].

Если в [math]X[/math] выделен класс множеств [math] \tau [/math], удовлетворяющий всем трем свойствам, то пара [math](X, \tau)[/math] называется топологическим пространством(ТП). В этом смысле МП — частный случай ТП.

Замкнутые множества

Множество F называется замкнутым в МП[math](X, \rho)[/math], если [math] \overline F = X \backslash F [/math] - открыто.

Применяя закон де Моргана, видим что класс открытых множеств [math] \tau [/math] двойственен классу замкнутых множеств.

Свойства замкнутых множеств

  1. [math] X, \varnothing [/math] — замкнуты
  2. Если [math]\ F_{\alpha} [/math] — замкнуто [math]\forall \alpha \in A [/math], то [math]\bigcup\limits_{\alpha \in A} F_{\alpha} [/math] — замкнуто
  3. Если [math]\ F_1 \dots F_n [/math] — замкнуты, то [math] \Rightarrow \bigcap\limits_{j = 1}^n F_j [/math] — замкнуто

Предел в метрическом пространстве

Определение:
[math] x_n \rightarrow x [/math] в МП [math](X, \rho)[/math], если:
  1. [math]\ \lim\limits_{n \rightarrow \infty} \rho(x_n, x) = 0\ [/math] , или
  2. [math]\forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N \Rightarrow \rho(x_n, x) \lt \varepsilon [/math]

[math] V_\varepsilon(x) = \{ y: \rho(y, x) \lt \varepsilon \} [/math]

[math]\lim\limits_{n \rightarrow \infty} x_n = x: \forall \varepsilon \gt 0, \exists N \in \mathbb{N}, \forall n \gt N: x_n \in V_\varepsilon(x)[/math]

Теорема (Единственность предела):
[math] x_n \rightarrow x', x_n \rightarrow x'' [/math] в МП[math](X, \rho) \Rightarrow x' = x'' [/math]
Доказательство:
[math]\triangleright[/math]

[math] \rho(x', x'') \leq \rho(x', x) + \rho(x'', x) \Rightarrow \rho(x', x'') = 0; x' = x'' [/math]

На самом деле, этот факт — свойство МП, состоящее в выполении в нем аксиомы отделимости Хаусдорфа:

Пусть [math] (X, \tau) [/math] - ТП, тогда если [math] \forall a \ne b: \exists G_1, G_2 \in \tau :[/math]

  1. [math] G_1 \cap G_2 = \varnothing [/math]
  2. [math] a \in G_1; b \in G_2 [/math]

Тогда в таком ТП выполнима аксиома отделимости Хаусдорфа.

Частный случай на МП:

[math] (X, \rho), a \ne b, \rho(b, a) \gt 0: r = \frac 1 3 \rho(a, b); V_r(a) \cap V_r(b) = \varnothing [/math] , ч.т.д.
[math]\triangleleft[/math]

Основное характеристическое свойство замкнутых множеств

Утверждение (В прямую сторону):
F - замкнуто, если оно содержит в себе пределы всех своих сходящихся последовательностей.
F - замкнуто [math] \iff \forall \{ x_1 \dots x_n \} \in F, x_n \rightarrow x, x \in F [/math]
[math]\triangleright[/math]


Пусть [math] x \notin F, F = \overline G \Rightarrow x \in G = \bigcup\limits_\alpha V \Rightarrow x \in V [/math]
[math] F \cap G = \varnothing \Rightarrow F \cap V = \varnothing [/math]
[math] x_n \rightarrow x : \forall \varepsilon \gt 0 \, \exists N \, \forall n \gt N : x_n \in V [/math] , что противоречит [math] x_n \in F (F \cap V = \varnothing) \Rightarrow x \in F [/math]
[math]\triangleleft[/math]

TODO: Написал вроде бы понятное доказательство в обратную сторону. Если есть какие-либо косяки - пишите в обсуждение.

Утверждение (В обратную сторону):
: Если множество F содержит в себе пределы всех своих сходящихся последовательностей, то оно замкнуто.
[math]\triangleright[/math]

Рассмотрим [math] x \notin F [/math]. Пусть [math] G = \overline F [/math]. Если [math] G [/math] - открытое, то [math] F [/math] - замкнутое множество (по определению).

Тогда каждый [math] y \notin F [/math] входит в [math] G [/math] вместе с каким-то открытым шаром (по определению - [math] G = \bigcup\limits_i V_i [/math] - открытое множество), причём, всегда можно выделить такой шар, что [math] y [/math] является его центром (достаточно положить [math] r' = r - \rho (x, y) [/math], где [math] x [/math] - центр шара, в который входит [math] y [/math], а [math] r [/math] - его радиус). При этом, [math] F \cap G = \varnothing \Rightarrow \forall i: V_i \cap F = \varnothing [/math].
Предположим, что это не так, и для какого-то [math] x \notin F [/math] не найдется такого открытого шара [math] V(x): x \in V_r(x) , \, V_r(x) \cap F = \varnothing [/math]
Запишем это формально: [math] \forall r: F \cap V_r(x) \neq \varnothing[/math].
Определим следующие последовательности:
[math] r_n = \frac 1n [/math], [math] \{ x_n \} : x_n \in (F \cap V_{r_n}(x)) [/math].
[math] r_n \rightarrow 0 \Rightarrow x_n \rightarrow x [/math].
Каждый [math] x_n \in F, x_n \rightarrow x \Rightarrow \{ x_n \} [/math] - сходящаяся последовательность в [math] F [/math]
Но, по предположению, [math] F [/math] содержит в себе пределы всех своих сходящихся последовательностей, а значит [math] x \in F [/math].
Получили противоречие, значит [math] G = \overline F [/math] - открытое множество, а значит [math] F [/math] - замкнуто.
[math]\triangleleft[/math]