Объём

Материал из Викиконспекты
Версия от 14:35, 9 декабря 2016; Artemohanjanyan (обсуждение | вклад) (Матрица поворота)
Перейти к: навигация, поиск

Вычисление поворота

Матрица поворота

У нас есть гиперплоскость [math]g[/math] и точки задающие её. В [math]d[/math] мерном пространстве у нас будет [math]d[/math] линейно независимых (ЛНЗ) точек [math]a_1, a_2, \dots, a_d[/math]. Линейную независимость точек воспринимаем творчески.

Определение:
Будем называть набор из [math]d[/math] точек линейно независимым, если мы можем выбрать одну из них, провести вектора от нее до всех остальных и получить [math]d-1[/math] ЛНЗ вектор.


Возьмем в нашем пространстве еще одну выделенную точку [math]p[/math]. Получившийся набор [math]a_1, a_2, \dots, a_d, p[/math] тоже будет ЛНЗ.

Пусть у нас есть какая-то выделенная зарание система координат [math]C[/math]. Эта система приходит обычно вместе с какой-то задачей, и обычно она декартова. И у нас тоже будет сейчас декартова.

Мы знаем, что можно составить матрицу перехода, если умеем выразить координаты векторов в исходной базовой системе координат [math]C[/math]. А в нашем случае мы это сделать, конечно, можем: поскольку вектор существует между любыми парами точек, просто сопредставим нашим точкам вектора, соединяющие начало координат [math]O[/math] и очередную точку. Значит, если нам известны координаты точек, то нам известны координаты векторов в ситеме [math]C[/math]. Запишем матрицу перехода и немножко преобразуем её:

Пример для [math]R^3[/math]

[math]A = \begin{pmatrix} \overrightarrow{Oa_1} - \overrightarrow{Op} \\ \overrightarrow{Oa_2} - \overrightarrow{Op} \\ \vdots \\ \overrightarrow{Oa_d} - \overrightarrow{Op} \end{pmatrix}^ \mathrm{T} = \begin{pmatrix} a_1 - p \\ a_2 - p\\ \vdots \\ a_d - p \end{pmatrix}^ \mathrm{T} = \begin{pmatrix} a_1 & 1 \\ a_2 & 1\\ \vdots & \vdots \\ a_d & 1 \\ p & 1 \end{pmatrix}^ \mathrm{T}[/math]

В дальнейшем нас будут интересовать детерминант этой матрицы и его знак:

[math]\det(A) = \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \vdots & \vdots \\ a_d & 1 \\ p & 1 \end{vmatrix}[/math]

Обоснование

Лемма:
Точка [math]p[/math] лежит на плоскости [math]g[/math] тогда и только тогда, когда определитель матрицы [math]A[/math] равен [math]0[/math].
Доказательство:
[math]\triangleright[/math]
Плоскость [math]g[/math] определяется замыканием набора [math]a_1, a_2, \dots, a_d[/math] ЛНЗ точек, значит, если [math]p[/math] принадлежит множеству, то [math]p[/math] является линейной комбинацией этих точек. В этом случае мы с помощью преобразований можем получить нулевую стррочку в матрице [math]A[/math], значит, ее определитель будет ноль.
[math]\triangleleft[/math]

Разобъем все точки пространства(кроме тех, что лежат на плоскости) на два множества в зависимости от того, какой знак для них будет иметь детерминант [math]A[/math]. Покажем, что наша классификация осмысленна.

Лемма:
Получившиеся множества будут выпуклыми.
Доказательство:
[math]\triangleright[/math]

По определению выпуклого множества. Возьмем две любые точки [math]p_1[/math] и [math]p_2[/math], лежащие в одной области. По аксиоматике существует вектор [math]\overrightarrow{p_1p_2}[/math] и по определению можно сделать линейную комбинацию. Значит можем получить любую точку между [math]p_1[/math] и [math]p_2[/math], лежащую с ними на одной прямой, отложив от [math]p_1[/math] вектор [math]\alpha \overrightarrow{p_1p_2}[/math], где [math]\alpha \in [0..1][/math]. Если подставить это в определитель, то получим

[math]\begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_1 + \alpha\overrightarrow{p_1p_2} & 1 \end{vmatrix} = \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ \alpha p_2 + (1 - \alpha)p_1 & 1 \end{vmatrix} = \alpha \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_2 & 1 \end{vmatrix} + (1 - \alpha) \begin{vmatrix} a_1 & 1 \\ a_2 & 1\\ \dots \\ a_d & 1 \\ p_1 & 1 \end{vmatrix} [/math]

Матрицы одинакового знака, и стоящие перед ними коэффициенты положительны. Значит, у нашей точки будет тот же знак определителя, что и у [math]p_1[/math] и [math]p_2[/math].
[math]\triangleleft[/math]

Хорошая лемма, пользоваться мы ей, конечно, не будем.

Проблема в том, что нужно показать, что любая непрерывная кривая не может пройти из точки одного множества в точку другого множества не пересекая плоскость. Но для этого нам необходимо понятие непрерывности, а непрерывность связана с топологией. А у нас есть только афинное пространство, но нет топологии. Пример с Парижской железнодорожной метрикой. TOTO

Можно было бы воспользоваться аналогом леммы Жордана о том, что любая замкнутая кривая без самопересечений делит пространство на две области, но у нас нет области, потому что понятие области связано с топологией.

В афинном пространстве можно вполне естественно ввести евклидовскую метрику: ввести скалярное произведение, а затем показать, что корень из скалярного произведения задает метрику. Тогда эта метрика будет индуцировать топологию открытыми шарами, а значит, можно будет воспользоваться аналогом теоремы Жордана.

Эта история о том, что даже когда мы притворяемся, что у нас нет метрики, мы неявно испоользуем топологию, индуцированную этой метрикой. Но, метрика, не единственна, и топология не единственна. Иногда нам достаточно топологии, которая даже может быть не индуцирована метрикой, или которая вообще не метризуема, но эта топология будет давать свойство непрерывности. Но тогда для нашей топогогии нужно будет доеказывать вышеупомянутый факт(про непрерывность кривой).

Итак, поворот классифицирует точки не лежащие на плоскости и разбивает их на два выпуклых множества

Объем