Алгоритмы и структуры данных4:Тикеты
Версия от 14:09, 24 февраля 2018; Lapenok.aleksej (обсуждение | вклад) (Новая страница: «== 1 Задача о паросочетании == # Алгоритм Форда-Фалкерсона для поиска максимального парос…»)
Содержание
- 1 1 Задача о паросочетании
- 2 2 Задача о максимальном потоке
- 3 3 Задача о потоке минимальной стоимости
- 4 4 Классы чисел и основная теорема арифметики
- 5 5 Лекция - Основные элементы теории чисел
- 6 6 Лекция - Основы теории групп
- 7 7 Лекция - Основы теории колец
- 8 8 Лекция - Основы теории полей
- 9 9 Лекция - Первообразные корни и квадратичные вычеты
- 10 10 Лекция - Квадратичные вычеты
- 11 11 Лекция - Аналитическая теория чисел
- 12 12 Лекция - Цепные (непрерывные) дроби и уравнение Пелля
1 Задача о паросочетании
- Алгоритм Форда-Фалкерсона для поиска максимального паросочетания
- Алгоритм Куна для поиска максимального паросочетания
- Паросочетания в недвудольных графах. Алгоритм вырезания соцветий (7)
- как-то тут сумбурно написано и все в кучу, надо это аккуратно расписать, выделить алгоритм, доказательство и привести пример с картинками
2 Задача о максимальном потоке
- Определение сети, потока
- Разрез, лемма о потоке через разрез
- Дополняющая сеть, дополняющий путь
- Лемма о сложении потоков
- Теорема Форда-Фалкерсона
- Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину
- Алоритм Эдмондса-Карпа (0,25)
- Добавить см также
- Алгоритм масштабирования потока
- Блокирующий поток (0,5)
- Добавить немного общей информации
- Интервики
- Схема алгоритма Диница
- Теоремы Карзанова о числе итераций алгоритма Диница в сети с целочисленными пропускными способностями
- Алгоритм поиска блокирующего потока в ациклической сети (10)
- алгоритм МКМ плохо и непонятно написан, желательно переписать описание, сделать псевдокод чуть менее абстрактным, добавить доказательство, добавить картиночку, вынести в отдельную статью, ссылка на оригинальную статью есть в обсуждении
- Метод проталкивания предпотока (7)
- Картиночки с резервуарами!
- Источники информации
- Добавить см. также
- Дефисы заменить на тире
- Отформатировать псевдокоды
- Алгоритм "поднять-в-начало"
- Теорема о декомпозиции
- Теорема о декомпозиционном барьере
- Циркуляция потока
- Алгоритм Каргера для нахождения минимального разреза
3 Задача о потоке минимальной стоимости
- Поток минимальной стоимости 3
- исправить замечания из обсуждения статьи
- Теорема Форда-Фалкерсона о потоке минимальной стоимости
- Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети
- Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости
- Использование потенциалов Джонсона при поиске потока минимальной стоимости (5)
- Написать и оформить так, чтобы не было чуши
- Сведение задачи о назначениях к задаче о потоке минимальной стоимости (0,5)
- Добавить см также
- Источники информации оформить нормально
- Венгерский алгоритм решения задачи о назначениях
4 Классы чисел и основная теорема арифметики
- Классы чисел 1-1,5
- увеличить дроби
- все формулы в тех
- источники информации добавить
- см также добавить
- английские термины
- заменить дефисы на тире, там где должно быть тире
- указать ссылки на основные статьи классов
- Натуральные и целые числа 5-10
- источники информации добавить
- см также добавить
- заменить дефисы на тире, там где должно быть тире
- Сделать нормальным
- Простые числа 2
- "Так как n делится на q, то n делится на a." показать формально
- поправить пунктуацию
- "Число N не делится ни на одно из простых чисел (2,3,5,…,p), так как при делении N на эти числа получится остаток 1." показать формально
- Наибольший общий делитель 2
- "Тогда gcd(a,b)=pmin(α1,β1)1⋅pmin(α2,β2)2⋅…⋅pmin(αk,βk)k" что такое p_i?
- Оформить правильно псевдокод
- заменить дефисы на тире, там где должно быть тире
- все формулы в тех
- второй пункт в лемме стандартного алгоритма Евклида переписать
- Основная теорема арифметики 2
- поместить в натуральные числа, нормально оформить
- Теоремы о простых числах 2
- переместить в конспект с простыми числами и нормально оформить
- Системы счисления 2
- Нормально заюзать тех
- источники информации добавить
- см также добавить
- английские термины
- Арифметика чисел в b-ичной системе счисления (Длинная арифметика) 5-8
- английские термины
- все формулы в тех
- категории
- источники информации
- см также
- знаки неравенств
- дроби
- добавить псевдокод
- сделать статью нормальной
- Разложение на множители (факторизация) 1-2
- знаки неравенств
- дефисы заменить на тире, там же должно быть тире
- английские термины
- сделать псевдокод одинаковым во всех частях статьи
- поправить статью
5 Лекция - Основные элементы теории чисел
- Сравнения, система вычетов, решение линейных систем по модулю 5-10-15
- поправить тех
- источники информации, см также
- сделать конспект нормальным
- разбить на 3 конспекта
- Китайская теорема об остатках 1-5
- поправить тех
- источники информации, см также
- добавить информации или поместить в конспект, где она должна быть теорема
- Теорема Ферма 1-5
- все правки из китайской теоремы об остатках
- Теорема Вильсона 1-5
- все правки из китайской теоремы об остатках
- Мультипликативность функции, свертка Дирихле 5-10
- разбить на 2, добавить информации
- поправить тех
- английские термины
- добавить использование шаблонов теорем/утверждений
- Функция Эйлера 1
- поправить тех
- английские термины
- добавить использование шаблонов терем/утверждений
- придать структуру
- Количество делителей, сумма делителей
- Функция Мебиуса
- Решето Эратосфена
- Быстрое возведение в степень
- Умножение по Монтгомери
- Дискретное преобразование Фурье
- Быстрое преобразование Фурье
6 Лекция - Основы теории групп
- Полугруппа, моноид, группа
- Абелева группа, Конечная группа
- Гомоморфизм групп, изоморфизм групп
- Подгруппа, нормальная подгруппа
- Порядок элемента группы, циклическая группа, конечно порожденная группа
- Регулярное представление группы
- Теорема о подгруппах циклической группы
- Смежные классы, теорема Лагранжа, факторгруппы
- Вычисление порядка элемента в группе
- Вычисление порядка перестановки в группе перестановок
- Дискретное логарифмирование в группе
- Действие группы на множестве
- Лемма Бернсайда, задача о числе ожерелий
- Представление групп
7 Лекция - Основы теории колец
- Определение кольца, подкольца, изоморфизмы колец
- Делители нуля, области целостности
- Единицы (обратимые элементы), группа обратимых элементов
- Неразложимые элементы, ассоциированные элементы и разложение на множители в целостных кольцах
- Евклидовы кольца
8 Лекция - Основы теории полей
- Определение поля и подполя, изоморфизмы полей
- Примеры полей
- Мультипликативная группа поля
- Расширения полей
9 Лекция - Первообразные корни и квадратичные вычеты
- Теорема о цикличности мультипликативной группы поля
- Первообразные корни
- Теорема о существовании первообразных корней по модулям вида
- Квадратичные вычеты, количество квадратичных вычетов по простому модулю
- Символ Лежандра, критерий Эйлера
- Теорема о при
- Лемма Гаусса для вычисления квадратичного характера числа по простому модулю
10 Лекция - Квадратичные вычеты
- Квадратичный закон взаимности
- Символ Якоби и его свойства
- Обобщенный квадратичный закон взаимности
- Алгоритм вычисления символа Якоби
- Тест Ферма проверки чисел на простоту, числа Кармайкла
- Тест Соловея-Штрассена
- Тест Миллера-Рабина
11 Лекция - Аналитическая теория чисел
- Факты из математического анализа
- Теорема Чебышёва
- Постулат Бертрана
- Уточнение констант в теореме Чебышёва
- Сумма обратных к простым
- Асимптотический закон распределения простых чисел