Активное обучение

Материал из Викиконспекты
Версия от 21:14, 2 февраля 2020; Mkryuchkov (обсуждение | вклад) (Сэмплирование по несогласию в комитете (англ. Query By Comittee))
Перейти к: навигация, поиск

Активное обучение (англ. Active learning) - область машинного обучения, где в отличие от обучения с учителем имеется набор неразмеченных данных и оракул, способный размечать данные. Зачастую обращение к оракулу затратно по времени или другим ресурсам. Требуется решить задачу, минимизируя количество обращений к оракулу.

Для вызова оракула обычно требуется привлечение человеческих ресурсов. В роли оракула может выступать эксперт, размечающий текстовые документы, изображения или видеозаписи. Помимо временных затрат могут быть и значительные финансовые, например, исследование химического соединения или реакции.


Постановка задачи классификации для активного обучения

Дано множество неразмеченных данных:

$X = \{x_1, ..., x_n\}$

Множество меток:

$Y = \{y_1, ..., y_m\}$

Оракул:

$O : X \rightarrow Y$ - функция, которая по объекту возвращает его метку.

Требуется восстановить функцию $a : X \rightarrow Y$, минимизируя количество обращений к оракулу.

На каждой итерации алгоритм фиксирует три множества:

1. $X_{unlabeled}$ - множество еще не размеченных объектов.

2. $X_{labeled}$ - множество размеченных, которые удовлетворяют некоторому порогу уверенности в классификации.

3. $X_{query}$ - множество объектов, которые подаются на вход оракулу. Заметим, что не всегда $X_{query} \subset X_{unlabeled}$, поскольку алгоритм может сам синтезировать объекты.

Основные стратегии

  • Отбор объектов из выборки (англ. Pool-based active learning). Имеется некоторая выборка, и алгоритм использует объекты из нее в качестве запросов к оракулу. В данной стратегии каждому объекту присваивается степень информативности - сколько выгоды принесет информация об истинной метке объекта, и оракулу отправляются самые информативные объекты.
  • Отбор объектов из потока (англ. Selective sampling). Алгоритм пользуется не статической выборкой, а потоком данных, и для каждого объекта из потока принимается решение, запрашивать оракула на этом объекте или самому присваивать метку согласно текущему классификатору.
  • Синтез объектов (англ. Query synthesis). Вместо использования заранее заданных объектов, алгоритм сам конструирует объекты и подает их на вход оракулу. Например, если объекты - это вектора в n-мерном пространстве, разделенные гиперплоскостью и решается задача бинарной классикации, имеет смысл давать оракулу на вход синтезированные вектора, близкие к границе.

Методы выбора объектов для запросов

Выбор по степени неуверенности

Выбор по степени неуверенности (англ. Uncertainty Sampling) - метод отбора объектов из выборки, где самыми информативными объектами считаются те, на которых текущий алгоритм меньше всего уверен в верности классификации. Для этого необходимо задать меру неуверенности в классификации на каждом объекте.

Зафиксируем модель на некотором этапе обучения и обозначим за $P(y | x)$ вероятность того, что объект $x$ принадлежит классу $y$. Приведем основные меры неуверенности для текущей классификации:

  • Максимальная энтропия (англ. Maximum Entropy)

$\Phi_{ENT}(x) = - \sum\limits_y{P(y | x) \log{P(y | x)}}$ - энтропия классификации на объекте $x$. Чем больше энтропия - тем больше неуверенность в классификации.

  • Минимальный отступ (англ. Smallest Margin)

$\Phi_{M}(x) = P(y_1 | x) - P(y_2 | x)$ - отступ (англ. margin) от $y_1$ - самого вероятного класса до $y_2$ - второго по вероятности класса. Очевидно, что если отступ велик, то велика и уверенность, потому что один класс заметно выигрывает у всех остальных. Поэтому имеет смысл запрашивать оракула на объектах с минимальным отступом.

  • Минимальная уверенность (англ. Least Confidence)

$\Phi_{LC}(x) = 1 - P(y_1 | x)$,  где $y_1$ - наиболее вероятный класс. Интересующие нас объекты - объекты с минимальной уверенностью.

Заметим, что в случае бинарной классификации эти методы эквивалентны.

Сэмплирование по несогласию в комитете (англ. Query By Comittee)

В данном методе алгоритм оперирует не одной моделью, а сразу несколькими, которые формируют комитет. Каждая из моделей обучена на размеченном множестве и принимает участие в общем голосовании на неразмеченных объектах. Идея состоит в том, что те объекты, на которых модели более всего расходятся в своих решениях, являются самыми информативными.

Множество моделей - $A^T = \{a_1, .., a_T\}$

Алгоритм выбирает те объекты, на которых достигается максимум энтропии:

$x_{informative} = arg \min\limits_x{P(y | x) \log{P(y | x)}}$

Здесь $P(y | x) = \dfrac{1}{T} \sum\limits_{a \in A^T}{[a(x) = y]}$

Version Space Reduction

См. также

Ссылки