Машинное обучение
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Общие понятия
- Общие понятия
- Переобучение
- Кросс-валидация
- Стохастический градиентный спуск
- Регуляризация
- Ранжирование
- Рекомендательные системы
- Интерпретируемые модели
- Жизненный цикл модели машинного обучения
- Анализ временных рядов
Классификация и регрессия
- Метрический классификатор и метод ближайших соседей
- Дерево решений и случайный лес
- Вариации регрессии
- Линейная регрессия
- Логистическая регрессия
- Метод опорных векторов (SVM)
- Ядра
- Оценка качества в задачах классификации и регрессии
- Байесовская классификация
- Байесовские сети
- Поиск ближайших соседей с помощью иерархического маленького мира
Кластеризация
- Кластеризация
- EM-алгоритм
- Иерархическая кластеризация
- Оценка качества в задаче кластеризации
- Эволюционные алгоритмы кластеризации
Ансамбли
Нейронные сети
- Нейронные сети, перцептрон
- Обратное распространение ошибки
- Практики реализации нейронных сетей
- Графовые нейронные сети
- Рекурсивные нейронные сети
Глубокое обучение
- Глубокое обучение
- Настройка глубокой сети
- Batch-normalization
- Проблемы нейронных сетей
- Рекуррентные нейронные сети
- Сиамская нейронная сеть
- Автокодировщик
- Сети глубокого доверия
Сверточные сети
Компьютерное зрение
- Компьютерное зрение
- Сегментация изображений
- Задача нахождения объектов на изображении
- Оценка положения
- Определение положения человека
- Распознавание изогнутого текста
- Карта глубины
- Вписывание части изображения
- Блендинг изображений
Порождающие модели
- Порождающие модели
- Генерация объектов
- Порождающие состязательные сети, Generative Adversarial Networks (GAN)
- PixelRNN и PixelCNN
- Вариационный автокодировщик
- Задача трансляции изображений
- Генерация текста
- Генерация изображения по тексту
Обработка естественного языка
- Распознавание речи
- Обработка естественного языка
- Векторное представление слов
- Классификация текстов и анализ тональности
- Долгая краткосрочная память
- Механизм внимания
- BERT (языковая модель)
- Синтез речи
- Диалоговые системы
Работа с данными
- Уменьшение размерности
- Выброс
- Алгоритмы сэмплирования
- Известные наборы данных
- Метод главных компонент (PCA)
- Стохастическое вложение соседей с t-распределением
- Синтетические наборы данных
Виды обучения
Автоматическое машинное обучение
- Автоматическое машинное обучение
- Настройка гиперпараметров
- Модель алгоритма и ее выбор
- Мета-обучение
- Поиск архитектуры нейронной сети
Обучение с подкреплением
Реализация
- Обзор библиотек для машинного обучения на Python
- Многопоточность в машинном обучении
- Примеры кода на Java
- Примеры кода на R
- Примеры кода на Scala
- Примеры кода на Kotlin
- Примеры кода на Kotlin в Jupyter Notebook
- Машинное обучение на мобильных телефонах
Применение машинного обучения на практике
- Анализ социальных сетей
- Машинное обучение в медицине
- Генерация дипфейков с помощью нейронных сетей
- Представление знаний
- Задача планирования движения
- Машинное обучение в астрономии
- Компьютерное зрение в микроскопии
- Обучение на больших данных
- Дополнение к ранжированию