Редактирование: Задача о порядке перемножения матриц

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 40: Строка 40:
 
Чтобы привести пример, давайте вернемся к нашим матрицам. Если у нас есть четыре матрицы <tex>ABCD</tex>, то мы посчитаем для <tex>(A)(BCD)</tex>, <tex>(AB)(CD)</tex>, и <tex>(ABC)(D)</tex>, делая рекурсивные вызовы на отрезках <tex>ABC</tex>, <tex>AB</tex>,<tex>CD</tex>, и <tex>BCD</tex>, чтобы найти минимальную стоимость. Потом среди них выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножения матриц: нужно только сгрупировать тем же образом матрицы, каким дается нам минимальная стоимость.
 
Чтобы привести пример, давайте вернемся к нашим матрицам. Если у нас есть четыре матрицы <tex>ABCD</tex>, то мы посчитаем для <tex>(A)(BCD)</tex>, <tex>(AB)(CD)</tex>, и <tex>(ABC)(D)</tex>, делая рекурсивные вызовы на отрезках <tex>ABC</tex>, <tex>AB</tex>,<tex>CD</tex>, и <tex>BCD</tex>, чтобы найти минимальную стоимость. Потом среди них выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножения матриц: нужно только сгрупировать тем же образом матрицы, каким дается нам минимальная стоимость.
  
Однако, если применить этот алгоритм, то обнаружим, что он работает также медленно, как и наивный способ перебирания всех [[Правильные скобочные последовательности |  скобочных последовательностей]]. Делается значительное количество ненужной работы. Например, в выше описанном алгоритме, осуществляется рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета <tex>ABC</tex> и <tex>AB</tex>. Но нахождение наилучшей стоимости для подсчета <tex>ABC</tex> так же требует нахождения лучшей стоимости для <tex>AB</tex>. Так как рекурсия растет вглубь все больше и больше, то и число ненужных повторений увеличивается. Итоговая асимптотика, как было сказано выше, равняется <tex>n</tex>–ому [[Числа Каталана | числу Каталана]], да плюс вычисление для каждой [[Правильные скобочные последовательности | правильной скобочной последовательности]] ''затрат'' на перемножение (то есть <tex>O(n \cdot C_n)</tex>). Так как <tex>N</tex>­-ое [[Числа Каталана | число Каталана]] равняется <tex dpi="163">  \frac{1}{n+1}{2 n \choose n} </tex> или асимптотически <tex dpi="163"> \frac{4^n}{n^{3/2}\sqrt{\pi}} </tex>, а это быстро возрастающая функция, нам бы хотелось решение,  которое работает быстрее.
+
Однако, если применить этот алгоритм, то обнаружим, что он работает также медленно, как и наивный способ перебирания всех [[Правильные скобочные последовательности |  скобочных последовательностей]]. Делается значительное количество ненужной работы. Например, в выше описанном алгоритме, осуществляется рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета <tex>ABC</tex> и <tex>AB</tex>. Но нахождение наилучшей стоимости для подсчета <tex>ABC</tex> так же требует нахождения лучшей стоимости для <tex>AB</tex>. Так как рекурсия растет вглубь все больше и больше, то и число ненужных повторений увеличивается. Итоговая асимптотика, как было сказано выше, равняется <tex>n</tex>–ому [[Числа Каталана | числу Каталана]], да плюс вычисление для каждой [[Правильные скобочные последовательности | правильной скобочной последовательности]] ''затрат'' на перемножение (то есть <tex>O(n \cdot C_n)</tex>). Так как <tex>N</tex>­-ое [[Числа Каталана | число Каталана]] равняется <tex dpi="163">  \frac{1}{n+1}{2 n \choose n} </tex> или асимптотически <tex dpi="163"> \frac{4^n}{n^{3/2}\sqrt{\pi}} </tex>, а это быстро возрастающая функциия, нам бы хотелось решение,  которое работает быстрее.
  
 
=== Псевдокод ===
 
=== Псевдокод ===
  
 
+
<code>
 
  '''int''' dp[][]      <font color="green">// dp[i][j] — ответ на отрезке [i, j)</font>
 
  '''int''' dp[][]      <font color="green">// dp[i][j] — ответ на отрезке [i, j)</font>
 
  '''int''' v[]        <font color="green">// Массив v[] — хранит все размеры матриц по порядку
 
  '''int''' v[]        <font color="green">// Массив v[] — хранит все размеры матриц по порядку
Строка 58: Строка 58:
 
                 dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] +  matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r))
 
                 dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] +  matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r))
 
     '''return''' dp[l][r]
 
     '''return''' dp[l][r]
 +
</code>
  
 
== См. также ==
 
== См. также ==

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: