Задача о порядке перемножения матриц

Материал из Викиконспекты
Перейти к: навигация, поиск
Задача:
Дана последовательность из [math]n[/math] матриц, требуется найти самый эффективный способ их перемножения.


У нас есть множество способов перемножить матрицы, потому что операция перемножения ассоциативна. Другими словами, нет разницы в каком порядке расставляются скобки между множителями, результат будет один и тот же.

Расстановок скобок достаточно много и их количество очень быстро растет. Точное количество всевозможных вариантов равно [math]n[/math]–ому числу Каталана. Однако, порядок в котором расставляются скобки между матрицами повлияет на количество арифметических операций, которые потребуются на вычисление ответа, или, другими словами, на эффективность.

Например, предположим, что [math]\dim{A}= 10 \times 30[/math], [math]\dim{B} = 30 \times 5[/math], [math]\dim{C} = 5 \times 60[/math]. Тогда:

Для [math] (A \times B)\times C[/math] будет [math](10\times30\times5) + (10\times5\times60) = 1500 + 3000 = 4500[/math] операций
Для [math] A \times(B \times C)[/math] будет [math](30\times5\times60) + (10\times30\times60) = 9000 + 18000 = 27000[/math] операций.

Как мы видим, первый способ гораздо эффективней.

Решение задачи[править]

Перебор всех вариантов[править]

В данной задаче нужно узнать минимальное количество операций (или минимальную стоимость), необходимых для перемножения матриц. Если перемножить только две матрицы, то можно осуществить это едиственным способом, следовательно минимальная стоимость — это стоимость перемножения этих двух матриц. В общем, можно найти минимальную стоимость используя следующий рекурсивный алгоритм:

  • взять последовательность матриц и разделить её на две части,
  • найти минимальную стоимость перемножения на каждой подпоследовательности,
  • сложить эти две стоимости и прибавить к этому стоимость перемножения двух получившихся матриц,
  • сделать это для каждой возможной позиции в последовательности, в которой она может быть разделена и взять минимум среди всех результатов.

Или другими словами, давайте обозначим через [math]f(i, j)[/math] минимальное количество скалярных умножений для вычисления матрицы [math]M_{i..j}[/math], то получаем следующее рекуррентное соотношение: [math] f(i,j) = \left \{ \begin{array}{ll} 0, & i=j \\ \min\limits_{i \leqslant k \lt j}{(f(i,k) + f(k+1,j) + p_{i-1}p_kp_j)} & i \lt j \end{array} \right. [/math]

Объясняется оно просто: для того, чтобы найти произведение матриц [math]M_{i..j}[/math] при [math]i=j[/math] не нужно ничего делать — это и есть сама матрица [math]M_i[/math]. При нетривиальном случае мы перебираем все точки разбиения матрицы [math]M_{i..j}[/math] на матрицы [math]M_{i..k}[/math] и [math]M_{k+1..j}[/math], ищем количество операций, необходимое чтобы их получить и затем перемножаем для получения матрицы [math]M_{i..j}[/math].(Оно будет равно кол-ву операций, потраченное на решение подзадач + стоимость умножения матриц [math]M_{i..k}M_{k+1..j}[/math]). Считаем, что размеры матриц заданы в массиве [math]p[/math] и размер матрицы [math]M_i[/math] равен [math]p_{i-1} \times p_i[/math].


Чтобы привести пример, давайте вернемся к нашим матрицам. Если у нас есть четыре матрицы [math]ABCD[/math], то мы посчитаем для [math](A)(BCD)[/math], [math](AB)(CD)[/math], и [math](ABC)(D)[/math], делая рекурсивные вызовы на отрезках [math]ABC[/math], [math]AB[/math],[math]CD[/math], и [math]BCD[/math], чтобы найти минимальную стоимость. Потом среди них выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножения матриц: нужно только сгрупировать тем же образом матрицы, каким дается нам минимальная стоимость.

Однако, если применить этот алгоритм, то обнаружим, что он работает также медленно, как и наивный способ перебирания всех скобочных последовательностей. Делается значительное количество ненужной работы. Например, в выше описанном алгоритме, осуществляется рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета [math]ABC[/math] и [math]AB[/math]. Но нахождение наилучшей стоимости для подсчета [math]ABC[/math] так же требует нахождения лучшей стоимости для [math]AB[/math]. Так как рекурсия растет вглубь все больше и больше, то и число ненужных повторений увеличивается. Итоговая асимптотика, как было сказано выше, равняется [math]n[/math]–ому числу Каталана, да плюс вычисление для каждой правильной скобочной последовательности затрат на перемножение (то есть [math]O(n \cdot C_n)[/math]). Так как [math]N[/math]­-ое число Каталана равняется [math] \frac{1}{n+1}{2 n \choose n} [/math] или асимптотически [math] \frac{4^n}{n^{3/2}\sqrt{\pi}} [/math], а это быстро возрастающая функциия, нам бы хотелось решение, которое работает быстрее.

Псевдокод[править]

int dp[][]      // dp[i][j] — ответ на отрезке [i, j)
int v[]         // Массив v[] — хранит все размеры матриц по порядку
                // Так как у нас размеры соседних матриц по вертикали и горизонтали совпадают, то они занесены в этот массив однократно
                // l — включая в отрезок, r — исключая из отрезка. Изначально l = 0, r = n, где n — длина последовательности  
int matrixChainMultiplication(int l, int r)      
    if dp[l][r] == -1 		                   // Если значение динамики не посчитано
        if l == r - 1 
            dp[l][r] = 0	                   // Если у нас подотрезок длины 1, то количество операций для перемножения равно нулю
        else
            dp[l][r] = [math]\infty[/math]
            for i = l + 1 to r - 1
                dp[l][r] = min(dp[l][r], v[l] * v[i] * v[r] +  matrixChainMultiplication(l, i) + matrixChainMultiplication(i, r))
    return dp[l][r]

См. также[править]

Источники информации[править]