Редактирование: Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 3: Строка 3:
 
|id=csgrammar
 
|id=csgrammar
 
|definition=
 
|definition=
'''Контекстно-свободной грамматикой''' (англ. ''сontext-free grammar'') называется [[Формальные грамматики|грамматика]], у которой в левых частях всех правил стоят только одиночные нетерминалы.
+
'''Контекстно-свободной грамматикой''' (англ. ''сontext-free grammar'') называется грамматика, у которой в левых частях всех правил стоят только одиночные нетерминалы.
 
}}
 
}}
 
{{Определение
 
{{Определение
|id=lang
 
 
|definition=
 
|definition=
 
'''Контекстно-свободный язык''' (англ. ''context-free language'') {{---}} язык, задаваемый контекстно-свободной грамматикой.
 
'''Контекстно-свободный язык''' (англ. ''context-free language'') {{---}} язык, задаваемый контекстно-свободной грамматикой.
Строка 20: Строка 19:
  
 
Рассмотрим грамматику, выводящую все правильные скобочные последовательности.  
 
Рассмотрим грамматику, выводящую все правильные скобочные последовательности.  
:<tex>(</tex> и <tex>)</tex> {{---}} терминальные символы
 
:<tex>S</tex> {{---}} стартовый нетерминал
 
  
Правила:
+
<tex>"("</tex> и <tex>")"</tex> {{---}} терминальные символы;
#<tex>S\rightarrow (S)S</tex>
 
#<tex>S\rightarrow S(S)</tex>
 
#<tex>S\rightarrow \varepsilon</tex>
 
  
Выведем слово <tex>(()(()))()</tex>:
+
<tex>S</tex> {{---}} стартовый нетерминал;
  
 +
Правила:<br>
 +
<tex>S\rightarrow (S)S</tex><br>
 +
<tex>S\rightarrow S(S)</tex><br>
 +
<tex>S\rightarrow \varepsilon</tex><br>
 +
Выведем слово <tex>"(()(()))()"</tex>:<br>
 
<tex>\boldsymbol{S}\Rightarrow (S)\boldsymbol{S} \Rightarrow (S)(\boldsymbol{S})S\Rightarrow(S)()\boldsymbol{S}\Rightarrow(\boldsymbol{S})()\Rightarrow(\boldsymbol{S}(S))()\Rightarrow(S(S)(\boldsymbol{S}))()\Rightarrow(S(S)(\boldsymbol{S}(S)))()\Rightarrow (S(\boldsymbol{S})((S)))()\Rightarrow(\boldsymbol{S}()((S)))()\Rightarrow(()((\boldsymbol{S})))()\Rightarrow(()(()))()</tex>
 
<tex>\boldsymbol{S}\Rightarrow (S)\boldsymbol{S} \Rightarrow (S)(\boldsymbol{S})S\Rightarrow(S)()\boldsymbol{S}\Rightarrow(\boldsymbol{S})()\Rightarrow(\boldsymbol{S}(S))()\Rightarrow(S(S)(\boldsymbol{S}))()\Rightarrow(S(S)(\boldsymbol{S}(S)))()\Rightarrow (S(\boldsymbol{S})((S)))()\Rightarrow(\boldsymbol{S}()((S)))()\Rightarrow(()((\boldsymbol{S})))()\Rightarrow(()(()))()</tex>
  
Строка 41: Строка 40:
 
'''Правосторонним выводом слова''' (англ. ''rightmost derivation'') <tex>\alpha</tex> называется такой вывод слова <tex>\alpha</tex>, в котором каждая последующая строка получена из предыдущей путем замены по одному из правил самого правого встречающегося в строке нетерминала.
 
'''Правосторонним выводом слова''' (англ. ''rightmost derivation'') <tex>\alpha</tex> называется такой вывод слова <tex>\alpha</tex>, в котором каждая последующая строка получена из предыдущей путем замены по одному из правил самого правого встречающегося в строке нетерминала.
 
}}
 
}}
Рассмотрим левосторонний вывод скобочной последовательности из примера:
+
Рассмотрим левосторонний вывод скобочной последовательности из примера:<br>
 
 
 
<tex>\boldsymbol{S}\Rightarrow (\boldsymbol{S})S \Rightarrow ((\boldsymbol{S})S)S\Rightarrow (()\boldsymbol{S})S\Rightarrow(()\boldsymbol{S}(S))S\Rightarrow(()(\boldsymbol{S}))S\Rightarrow(()(\boldsymbol{S}(S)))S\Rightarrow(()((\boldsymbol{S})))S\Rightarrow(()(()))\boldsymbol{S}\Rightarrow(()(()))(\boldsymbol{S})S\Rightarrow(()(()))()\boldsymbol{S}\Rightarrow(()(()))()</tex>
 
<tex>\boldsymbol{S}\Rightarrow (\boldsymbol{S})S \Rightarrow ((\boldsymbol{S})S)S\Rightarrow (()\boldsymbol{S})S\Rightarrow(()\boldsymbol{S}(S))S\Rightarrow(()(\boldsymbol{S}))S\Rightarrow(()(\boldsymbol{S}(S)))S\Rightarrow(()((\boldsymbol{S})))S\Rightarrow(()(()))\boldsymbol{S}\Rightarrow(()(()))(\boldsymbol{S})S\Rightarrow(()(()))()\boldsymbol{S}\Rightarrow(()(()))()</tex>
  
Строка 53: Строка 51:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Крона дерева разбора''' (англ. ''leaves of the parse tree'') {{---}} множество терминальных символов, упорядоченное в соответствии с номерами их достижения при обходе дерева в глубину из корня. Крона дерева разбора представляет из себя слово языка, которое выводит это дерево.
+
'''Крона''' дерева разбора (англ. ''leaves of the parse tree'') {{---}} множество терминальных символов, упорядоченное в соответствии с номерами их достижения при обходе дерева в глубину из корня. Крона дерева разбора представляет из себя слово языка, которое выводит это дерево.
 
}}
 
}}
 
+
<br>
Построим дерево разбора скобочной последовательности из примера.
+
Построим дерево разбора скобочной последовательности из примера.<br>
 
+
[[Файл:ParsingTree.png|350px]]
[[Файл:BracketsSequenceParsingTree1.png]]
 
  
 
{{Теорема
 
{{Теорема
Строка 66: Строка 63:
 
Используем индукцию по высоте дерева.
 
Используем индукцию по высоте дерева.
  
'''База:''' Базисом является высота <tex>1</tex>, наименьшая из возможных для дерева разбора с терминальной кроной.
+
'''Базис.''' Базисом является высота <tex>1</tex>, наименьшая из возможных для дерева разбора с терминальной кроной. Дерево должно выглядеть, как на рис. 5.8, с корнем, отмеченным <tex>A</tex>, и сыновьями, образующими цепочку <tex>\omega</tex>. Поскольку это дерево является деревом разбора, <tex>A \rightarrow \omega</tex> должно быть продукцией. Таким образом, <tex>A \Rightarrow_{lm} \omega</tex> есть одношаговое левое порождение <tex>\omega</tex> из <tex>A</tex>.
:Поскольку это дерево является деревом разбора, <tex>A \rightarrow \omega</tex> должно быть продукцией. Таким образом, <tex>A \Rightarrow_{lm} \omega</tex> есть одношаговое левое порождение <tex>\omega</tex> из <tex>A</tex>.
 
  
'''Индукционный переход:''' Существует корень с отметкой <tex>A</tex> и сыновьями, отмеченными слева направо <tex>X_1X_2 \ldots X_k</tex>. Символы <tex>X</tex> могут быть как терминалами, так и переменными.
+
'''Индукция.''' Если высота дерева равна <tex>n</tex>, где <tex>n > 1</tex>, то оно должно иметь вид, как на рис. 5.9. Таким образом, существует корень с отметкой <tex>A</tex> и сыновьями, отмеченными слева направо <tex>X_1X_2...X_k</tex>. Символы <tex>X</tex> могут быть как терминалами, так и переменными.
 
# Если <tex>X_i</tex> — терминал, то определим <tex>\omega_i</tex> как цепочку, состоящую из одного <tex>X_i</tex>.
 
# Если <tex>X_i</tex> — терминал, то определим <tex>\omega_i</tex> как цепочку, состоящую из одного <tex>X_i</tex>.
 
# Если <tex>X_i</tex> — переменная, то она должна быть корнем некоторого поддерева с терминальной кроной, которую обозначим <tex>\omega_i</tex>. Заметим, что в этом случае высота поддерева меньше <tex>n</tex>, поэтому к нему применимо предположение индукции. Следовательно, существует левое порождение <tex>X_i \Rightarrow^{*}_{lm} \omega_i</tex>.
 
# Если <tex>X_i</tex> — переменная, то она должна быть корнем некоторого поддерева с терминальной кроной, которую обозначим <tex>\omega_i</tex>. Заметим, что в этом случае высота поддерева меньше <tex>n</tex>, поэтому к нему применимо предположение индукции. Следовательно, существует левое порождение <tex>X_i \Rightarrow^{*}_{lm} \omega_i</tex>.
  
Заметим, что <tex>\omega = \omega_1\omega_2 \ldots \omega_k</tex>.
+
Заметим, что <tex>\omega = \omega_1\omega_2...\omega_k</tex>.
Построим левое порождение цепочки <tex>\omega</tex> следующим образом:
+
Построим левое порождение цепочки <tex>\omega</tex> следующим образом. Начнем с шага <tex>A \Rightarrow_{lm} X_1X_2...X_k</tex>. Затем для <tex>i = 1, 2, ..., k</tex> покажем, что имеет место следующее порождение.
:Начнем с шага <tex>A \Rightarrow_{lm} X_1X_2\ldots X_k</tex>.
+
 
:Затем для <tex>i = 1, 2, \ldots, k \ </tex> покажем, что имеет место следующее порождение: <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex>
+
<tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2...\omega_iX_{i+1}X_{i+2}...X_k</tex>
 +
 
 +
Данное доказательство использует в действительности еще одну индукцию, на этот раз по <tex>i</tex>. Для базиса <tex>i = 0</tex> мы уже знаем, что <tex>A \Rightarrow_{lm} X_1X_2...X_k</tex>. Для индукции предположим, что существует следующее порождение.
 +
 
 +
<tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2...\omega_{i–1}X_iX_{i+1}...X_k</tex>
 +
 
 +
# Если <tex>X_i</tex> — терминал, то не делаем ничего, но в дальнейшем рассматриваем <tex>X_i</tex> как терминальную цепочку <tex>\omega_i</tex>. Таким образом, приходим к существованию следующего порождения.<br><tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2...\omega_iX_{i+1}X_{i+2}...X_k</tex><br>
 +
# Если <tex>X_i</tex> является переменной, то продолжаем порождением <tex>\omega_i</tex> из <tex>X_i</tex> в контексте уже
 +
построенного порождения. Таким образом, если этим порождением является
  
Данное доказательство использует в действительности еще одну индукцию, на этот раз по <tex>i</tex>.
+
<tex>X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2... \Rightarrow_{lm} \omega_i</tex>,
Для базиса <tex>i = 0</tex> мы уже знаем, что <tex>A \Rightarrow_{lm} X_1X_2\ldots X_k</tex>.
 
  
Для индукции предположим, что существует следующее порождение: <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_{i–1}X_iX_{i+1}\ldots X_k</tex>
+
то продолжаем следующими порождениями.
  
# Если <tex>X_i</tex> — терминал, то не делаем ничего, но в дальнейшем рассматриваем <tex>X_i</tex> как терминальную цепочку <tex>\omega_i</tex>. Таким образом, приходим к существованию следующего порождения. <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex>
+
<tex>\omega_1\omega_2...\omega_{i–1}X_iX_{i+1}...X_k \Rightarrow_{lm}</tex>
# Если <tex>X_i</tex> является переменной, то продолжаем порождением <tex>\omega_i</tex> из <tex>X_i</tex> в контексте уже построенного порождения. Таким образом, если этим порождением является: <tex>X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2\ldots \Rightarrow_{lm} \omega_i</tex>, то продолжаем следующими порождениями:
 
  
::<tex>\omega_1\omega_2\ldots\omega_{i–1}X_iX_{i+1}\ldots X_k \Rightarrow_{lm}</tex>
+
<tex>\omega_1\omega_2...\omega_{i–1}\alpha_1X_{i+1}...X_k \Rightarrow_{lm}</tex>
  
::<tex>\omega_1\omega_2\ldots\omega_{i–1}\alpha_1X_{i+1}\ldots X_k \Rightarrow_{lm}</tex>
+
<tex>\omega_1\omega_2...\omega_{i–1}\alpha_2X_{i+1}...X_k \Rightarrow_{lm}</tex>
  
::<tex>\omega_1\omega_2\ldots\omega_{i–1}\alpha_2X_{i+1}\ldots X_k  \Rightarrow_{lm}</tex>
+
<tex>...</tex>
  
::<tex>\ldots</tex>
+
<tex>\omega_1\omega_2...\omega_iX_{i+1}X_{i+2}...X_k</tex>
  
::<tex>\omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex>
+
Результатом является порождение <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2...\omega_iX_{i+1}X_{i+2}...X_k</tex>.
  
Результатом является порождение <tex>A \Rightarrow^{*}_{lm} \omega_1\omega_2\ldots\omega_iX_{i+1}X_{i+2}\ldots X_k</tex>.
 
 
Когда <tex>i = k</tex>, результат представляет собой левое порождение <tex>\omega</tex> из <tex>A</tex>.
 
Когда <tex>i = k</tex>, результат представляет собой левое порождение <tex>\omega</tex> из <tex>A</tex>.
 
}}
 
}}
Строка 104: Строка 105:
 
|statement=Для каждой грамматики <tex>\Gamma = \langle \Sigma, N, S, P \rangle</tex> и <tex>\omega</tex> из <tex>N^{*}</tex> цепочка <tex>\omega</tex> имеет два разных дерева разбора тогда и только тогда, когда <tex>\omega</tex> имеет два разных левых порождения из <tex>P</tex>.
 
|statement=Для каждой грамматики <tex>\Gamma = \langle \Sigma, N, S, P \rangle</tex> и <tex>\omega</tex> из <tex>N^{*}</tex> цепочка <tex>\omega</tex> имеет два разных дерева разбора тогда и только тогда, когда <tex>\omega</tex> имеет два разных левых порождения из <tex>P</tex>.
 
|proof=
 
|proof=
<tex>\Longrightarrow</tex>
+
(Необходимость) Внимательно рассмотрим построение левого порождения по дереву разбора в доказательстве [[#t1|теоремы]]. В любом случае, если у двух деревьев разбора впервые появляется узел, в котором применяются различные продукции, левые порождения, которые строятся, также используют разные продукции и, следовательно, являются различными.
 
 
:Внимательно рассмотрим построение левого порождения по дереву разбора в доказательстве [[#t1|теоремы]]. В любом случае, если у двух деревьев разбора впервые появляется узел, в котором применяются различные продукции, левые порождения, которые строятся, также используют разные продукции и, следовательно, являются различными.
 
 
 
<tex> \Longleftarrow </tex>
 
  
:Хотя мы предварительно не описали непосредственное построение дерева разбора по левому порождению, идея его проста. Начнем построение дерева с корня, отмеченного стартовым символом. Рассмотрим порождение пошагово. На каждом шаге заменяется переменная, и эта переменная будет соответствовать построенному крайнему слева узлу дерева, не имеющему сыновей, но отмеченному этой переменной. По продукции, использованной на этом шаге левого порождения, определим, какие сыновья должны быть у этого узла. Если существуют два разных порождения, то на первом шаге, где они различаются, построенные узлы получат разные списки сыновей, что гарантирует различие деревьев разбора.
+
(Достаточность) Хотя мы предварительно не описали непосредственное построение дерева разбора по левому порождению, идея его проста. Начнем построение дерева с корня, отмеченного стартовым символом. Рассмотрим порождение пошагово. На каждом шаге заменяется переменная, и эта переменная будет соответствовать построенному крайнему слева узлу дерева, не имеющему сыновей, но отмеченному этой переменной. По продукции, использованной на этом шаге левого порождения, определим, какие сыновья должны быть у этого узла. Если существуют два разных порождения, то на первом шаге, где они различаются, построенные узлы получат разные списки сыновей, что гарантирует различие деревьев разбора.
 
}}
 
}}
  
Строка 127: Строка 124:
 
Очевидно, что по дереву разбора однозначно восстанавливается левосторонний(правосторонний) вывод. Поскольку каждое слово из языка выводится только одним деревом разбора, то существует только один левосторонний(правосторонний) вывод этого слова.
 
Очевидно, что по дереву разбора однозначно восстанавливается левосторонний(правосторонний) вывод. Поскольку каждое слово из языка выводится только одним деревом разбора, то существует только один левосторонний(правосторонний) вывод этого слова.
 
}}
 
}}
 
+
<br>
 
{{Утверждение
 
{{Утверждение
|statement=Грамматика из примера не является однозначной.
+
|statement = Грамматика из примера не является однозначной.
|proof=Выше уже было построено дерево разбора для слова <tex>(()(()))()</tex>.
+
|proof =
 +
Выше уже было построено дерево разбора для слова <tex>"(()(()))()"</tex>.
 
Построим еще одно дерево разбора для данного слова.
 
Построим еще одно дерево разбора для данного слова.
  
 
Например, оно будет выглядеть так:
 
Например, оно будет выглядеть так:
  
[[Файл:BracketsSequenceParsingTree2.png]]
+
[[Файл:Parsetree2.png|300px]]
 
Таким образом, существует слово, у которого есть более одного дерева разбора в данной грамматике <tex>\Rightarrow</tex> эта грамматика не является однозначной.
 
Таким образом, существует слово, у которого есть более одного дерева разбора в данной грамматике <tex>\Rightarrow</tex> эта грамматика не является однозначной.
 
}}
 
}}
 
+
<br>
 
{{Утверждение
 
{{Утверждение
|statement=Существуют языки, которые можно задать одновременно как однозначными, так и неоднозначными грамматиками.
+
|statement = Существуют языки, которые можно задать одновременно как однозначными, так и неоднозначными грамматиками.
|proof=Для доказательства достаточно привести однозначную грамматику для языка правильных скобочных последовательностей (неоднозначной грамматикой для данного языка является грамматика из примера выше).
+
|proof =
 +
Для доказательства достаточно привести однозначную грамматику для языка правильных скобочных последовательностей (неоднозначной грамматикой для данного языка является грамматика из примера выше).
  
 
Рассмотрим грамматику:
 
Рассмотрим грамматику:
:<tex>(</tex> и <tex>)</tex> {{---}} терминальные символы
 
:<tex>S</tex> {{---}} стартовый нетерминал
 
  
Правила:
+
<tex>"("</tex> и <tex>")"</tex> {{---}} терминальные символы;
#<tex>S\rightarrow (S)S</tex>
+
 
#<tex>S\rightarrow \varepsilon</tex>
+
<tex>S</tex> {{---}} стартовый нетерминал;
 +
 
 +
Правила:<br>
 +
1) <tex>S\rightarrow (S)S</tex><br>
 +
2) <tex>S\rightarrow \varepsilon</tex><br>
  
 
Покажем, что эта грамматика однозначна.
 
Покажем, что эта грамматика однозначна.
 +
 
Для этого, используя индукцию, докажем, что для любого слова <tex>\omega</tex>, являющегося правильной скобочной последовательностью, в данной грамматике существует только одно дерево разбора.
 
Для этого, используя индукцию, докажем, что для любого слова <tex>\omega</tex>, являющегося правильной скобочной последовательностью, в данной грамматике существует только одно дерево разбора.
  
 
'''База:''' Если <tex>\omega=\varepsilon</tex>, то оно выводится только по второму правилу <tex>\Rightarrow</tex> для него существует единственное дерево разбора.
 
'''База:''' Если <tex>\omega=\varepsilon</tex>, то оно выводится только по второму правилу <tex>\Rightarrow</tex> для него существует единственное дерево разбора.
  
'''Индукционный переход:''' Пусть <tex>\left\vert \omega \right\vert=n</tex> и <tex>\forall \upsilon</tex>: <tex>\left\vert \upsilon \right\vert < n</tex> и <tex>\upsilon</tex> {{---}} правильная скобочная последовательность, у которой <tex>\exists!</tex> дерево разбора.  
+
'''Переход:''' Пусть <tex>\left\vert \omega \right\vert=n</tex> и <tex>\forall \upsilon</tex>: <tex>\left\vert \upsilon \right\vert < n</tex> и <tex>\upsilon</tex> {{---}} правильная скобочная последовательность <tex>\exists!</tex> дерево разбора.  
  
:Найдем в слове <tex>\omega</tex> минимальный индекс <tex>i \neq 0</tex> такой, что слово <tex>\omega[0 \ldots i]</tex> является правильной скобочной последовательностью. Так как <tex>i \neq 0</tex> минимальный, то <tex>\omega[0 \ldots i]=(\alpha)\ </tex>. Из того, что <tex>\omega</tex> является правильной скобочной последовательностью <tex>\Rightarrow</tex> <tex>\alpha</tex> и  <tex>\beta=\omega[i+1 \ldots n-1]</tex> {{---}} правильные скобочные последовательности, при этом <tex>\left\vert \alpha \right\vert<n</tex> и <tex>\left\vert \beta \right\vert<n \Rightarrow</tex> по индукционному предположению предположению у <tex>\alpha</tex> и <tex>\beta</tex> существуют единственные деревья разбора.
+
Найдем в слове <tex>\omega</tex> минимальный индекс <tex>i \neq 0</tex> такой, что слово <tex>\omega[0..i]</tex> является правильной скобочной последовательностью. Так как <tex>i \neq 0</tex> минимальный, то <tex>\omega[0..i]=(\alpha)</tex>. Из того, что <tex>\omega</tex> является правильной скобочной последовательностью <tex>\Rightarrow</tex> <tex>\alpha</tex> и  <tex>\beta=\omega[i+1..n-1]</tex> {{---}} правильные скобочные последовательности, при этом <tex>\left\vert \alpha \right\vert<n</tex> и <tex>\left\vert \beta \right\vert<n \Rightarrow</tex> по индукционному предположению предположению у <tex>\alpha</tex> и <tex>\beta</tex> существуют единственные деревья разбора.
  
:Если мы покажем, что из части <tex>(S)</tex> первого правила можно вывести только слово <tex>(\alpha)</tex>, то утверждение будет доказано (так как из первой части первого правила выводится <tex>\alpha</tex>, а из второй только <tex>\beta</tex> и для каждого из них по предположению существуют единственные деревья разбора).
+
Если мы покажем, что из части <tex>(S)</tex> первого правила можно вывести только слово <tex>(\alpha)</tex>, то утверждение будет доказано (так как из первой части первого правила выводится <tex>\alpha</tex>, а из второй только <tex>\beta</tex> и для каждого из них по предположению существуют единственные деревья разбора).
  
:Пусть из <tex>(S)</tex> была выведена часть слова <tex>\omega[0 \ldots j]=(\gamma)</tex>, где <tex>j < i</tex>, при этом <tex>\gamma</tex> является правильной скобочной последовательностью, но тогда как минимальный индекс мы должны были выбрать <tex>j</tex>, а не <tex>i</tex> {{---}} противоречие.  
+
Пусть из <tex>(S)</tex> была выведена часть слова <tex>\omega[0..j]=(\gamma)</tex>, где <tex>j < i</tex>, при этом <tex>\gamma</tex> является правильной скобочной последовательностью, но тогда как минимальный индекс мы должны были выбрать <tex>j</tex>, а не <tex>i</tex> {{---}} противоречие.  
  
:Аналогично из <tex>(S)</tex> не может быть выведена часть слова <tex>\omega[0 \ldots j] \ </tex>, где <tex>j > i</tex>, потому что тогда <tex>\omega[0 \ldots i]=(\alpha) \ </tex> не будет правильной скобочной последовательностью, так как в позиции <tex>i-1</tex> баланс скобок будет отрицательный.
+
Аналогично из <tex>(S)</tex> не может быть выведена часть слова <tex>\omega[0..j]</tex>, где <tex>j > i</tex>, потому что тогда <tex>\omega[0..i]=(\alpha)</tex> не будет правильной скобочной последовательностью, так как в позиции <tex>i-1</tex> баланс скобок будет отрицательный.
  
:Значит, из <tex>(S)</tex> была выведена часть слова <tex>\omega[0 \ldots i] \Rightarrow \omega \ </tex> имеет единственное дерево разбора <tex>\Rightarrow</tex> данная грамматика однозначная.
+
Значит, из <tex>(S)</tex> была выведена часть слова <tex>\omega[0..i] \Rightarrow \omega</tex> имеет единственное дерево разбора <tex>\Rightarrow</tex> данная грамматика однозначная.
  
 
Таким образом, для языка правильных скобочных последовательностей мы привели пример как однозначной, так и неоднозначной грамматики.
 
Таким образом, для языка правильных скобочных последовательностей мы привели пример как однозначной, так и неоднозначной грамматики.
 
}}
 
}}
  
Однако, есть КС-языки, для которых не существует однозначных КС-грамматик. Такие языки и грамматики их порождающие называют '''существенно неоднозначными'''.
+
Однако, есть КС-языки, для которых не существует однозначных КС-грамматик. Такие языки и грамматики их порождающие называют [[Существенно неоднозначные языки|''существенно неоднозначными'']].
{{main|Существенно неоднозначные языки}}
 
  
 
==См. также==
 
==См. также==
Строка 187: Строка 188:
 
[[Категория: Теория формальных языков]]
 
[[Категория: Теория формальных языков]]
 
[[Категория: Контекстно-свободные грамматики]]
 
[[Категория: Контекстно-свободные грамматики]]
[[Категория: Базовые понятия о грамматиках]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)