Самостабилизирующиеся алгоритмы

Материал из Викиконспекты
Перейти к: навигация, поиск


Определение:
Самостабилизирующие алгоритмы — это идея построения алгоритмов, устойчивых к ошибкам:
  • Код потерять сложно, поэтому мы считаем, что он не портится при падении узлов.
  • Алгоритм может работать с любой комбинацией данных.
  • Из любого состояния мы попадаем в легальное через конечное число шагов (при отсутствии сбоев).

Тогда от любого сбоя мы через конечное число шагов будем восстанавливаться без консенсусов и прочих развлечений.

Взаимное исключение

Dijkstra Stabilizing Token Ring Algorithm.

Сначала надо переформулировать задачу: мы говорим, что каждый процесс в системе может либо иметь привилегию, либо не иметь. В произвольном состоянии системы привилегия может быть у произвольного количества процессов, но через конечное число шагов она остаётся только у одного процесса и мы входим в легальное состояние. Дальше остаёмся только в легальных состояниях.

TODO: а какие сообщения процессы посылают друг другу? Могут ли быть ошибки (наверное, нет)? Может ли система быть асинхронной (наверное, тоже нет)?

Все $N$ процессов будут замкнуты в кольцо, в котором один процесс назван "первым". У каждого процесса есть состояние — число от 0 до $K-1$, причём $K \ge N$ — параметр алгоритма.

По определению положим, что у процесса есть привилегия, если:

  • Он первый и его значение $S$ совпадает со значением $L$ следующего по часовой стрелке процесса.
  • Он не первый и его $S$ не совпадает с $L$.

Например, на рисунке ниже толстая граница у выделенного процесса, а жёлтым обозначена привилегия:

Distributed-self-stabilization-legal.png

Правила перехода в новое состояние:

  • Для первого процесса: если была привилегия ($S=L$), то переходим в состояние $(S + 1) \bmod K$
  • Для не-первого процесса: если привилегия есть ($S \neq L$), то переходим в состояние $L$

Пример двух переходов:

Distributed-self-stabilization-step-1.png

Distributed-self-stabilization-step-2.png

Таким образом, в легальном состоянии привилегия у нас ходит по кругу, как в алгоритме с токеном. Но там потеря токена была смертельной для алгоритма, а у нас — не смертельна.

Доказательство стабилизируемости

Лемма: в любом состоянии хотя бы у одного процесса есть привилегия. В противном случае у нас, с одной стороны, все значения машин равны друг другу (потому что для каждой машины, кроме первой, её значение совпадает со следующей по кругу), а с другой стороны значение первой машины и её соседа должны отличаться, противоречие.

Лемма: что бы не происходило в системе, через $O(N^2)$ шагов в системе первый процесс сделает ход. Доказательство (с лекции): если первый процесс не делает ход, то следующий за ним против часовой стрелки процесс 2 сможет сделать максимум один ход: взять себе значение первого процесса. Процесс 3 после каждого хода процесса 2 может сделать максимум один ход: взять себе значение процесса 2. То есть процесс 3 может сделать не больше двух ходов (один исходно, один после хода процесса 2). Аналогично, процесс 4 может сделать не больше трёх ходов, и так далее. Итого мы получаем, что если первый процесс не делает шаги, то через $O(N^2)$ шагов привилегия полностью исчезнет, чего не бывает.

Альтернативное доказательство (проверено рандомом): если первый процесс может сделать ход сразу, то всё доказали. Иначе у него нет привилегии. Заметим, что если следующий за ним по часовой стрелке процесс 2 либо имеет значение, равное ему, либо отличающееся (тогда он имеет привилегию и сразу делает ход). Таким образом, через один ход процессы 1 и 2 имеют одинаковые значения. Аналогично, через два хода процессы 1, 2 и 3 имеют одинаковые значения. А через $N-1$ шаг все процессы гарантированно имеют одинаковые значения (если первый процесс так и не походил). Таким образом, через $N-1$ шаг у первого процесса появляется привилегия и он ходит, $N=O(N^2)$.

Лемма: рано или поздно у первого процесса будет уникальное $S$. Доказательство: все остальные процессы умеют только копировать состояния друг у друга, а первый процесс ходит бесконечно. Поэтому рано или поздно он перейдёт на состояние, которое не совпадает ни с одним из оставшихся $N-1$ состоянием.

Лемма: через $O(N^2)$ после этого система стабилизируется. Альтернативное доказательство (не с лекции): это состояние будет сразу же скопировано на второй процесс, потом сразу же скопировано на третий, и так далее, после чего мы прийдём в состояние, где все значения равны, а оно легальное.

Поиск остовного дерева

Такая задача возникает, например, в internet of things: набросали с вертолёта на поле размером 3км*3км много хрупких устройств со слабыми антеннами, которым надо соединиться в единую сеть. При этом топология связи там неполная и половина устройств подохла. А мы хотим построить дерево, чтобы узлы могли друг с другом общаться (а не каждый каждому передавать, потому что тогда надо бороться с циклами).

Решение начинается с инициатора (например, узел, которому надо что-нибудь узнать про всех остальных), которому это дерево нужно.

Каждый узел поддерживает у себя $d$ (расстояние до корня) и $p$ (узел-предок в дереве). Корень всегда ставит у себя $d=0$ и $p=-1$, а остальные узлы в постоянном режиме делают:

  • Найти соседа $j$ с минимальным $d_j$
  • Установить его в качестве своего родителя и $d_i=d_j+1$

Тогда корень стабилизируется сразу, узлы, которым корень виден, стабилизируются через одну итерацию, их соседи — через две, и так далее.

Если какой-нибудь узел выпадает, то его дети найдут себе кого-нибудь ещё и снова встроятся в дерево.

Единственная проблема — если умирает корень, но тогда узнавший об этом узел может инициировать перестроение дерева (если у нас цель — связь).